COEN 168/268

Mobile Web Application Development
APIs and JSON

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

Apps are nothing without data...

As an app developer you need to:

e Create a server-side source of data that persists

e Easily get that data to your app in a convenient format
e Be able to create, read, update, or delete data

e Also, be able to do this without reloading the page

As a result, you need to use the following
acronyms:

e Use REST and JSON to create a web service API

 |Implement AJAX calls on the client to send and receive data

What is REST, JSON, and AJAX?

e REST: The principles for creating a architecturally sound source
of data through a defined web service

e JSON: The structure of the data that you're sending

e AJAX: The implementation of fetching and writing data in the
client to the server

Now, let's talk about each one...

REST

REpresentational State Transfer

What is REST?

e Created by Roy Fielding in 2000 in his Ph. D. thesis to describe a
set of architectural principles for implementing the HTTP
(Hypertext Transfer Protocol)

e |n RESTful systems, servers expose resources using a URI
(Uniform Resource Identifier, a URL is a form of a URI)

 These resources are accessed by clients (like the web browser)
using the four HT TP resource verbs:

 GET, POST, PUT, and DELETE

What Is a resource?

A resource represents a tangle object that you
can operate on

Basic REST Principles

App state and functionality are divided into resources

Resources can be addressed using standard URIs that can be
used as hyperlinks

Resources are only accessed using the the four HTTP verbs

All resources provide information using the MIME types
supported by HTTP

The protocol is stateless, cacheable, and layered

A bit about the verbs used in HTTP requests

e Use GET: Used when getting a resource or a list of resources

e Use DELETE: Used when deleting an existing resource

Use POST:

e Use when you want to create a new resource for which client
does not know the ID and you want the server to provide it

e Use it when you want to update a resource on the server that
may require additional server-side work

Use PUT:

e Use it when you want to create a new resource and the client
either assigns the ID for the resource or knows it already

e Use if when you want to update an existing resource by replacing
it completely with the data that you send

These are also called CRUD operations
(Create, Read, Update, Delete)

For POST and PUT you send data in the POST body of the request

For example, some REST actions...

GET /todos/ - retrieves a list of all todos

GET /todos /123 <- retrieves the details of a resource with ID = 123
PUT /todos/123 <- creates a new resource or fully updates an
existing resource with ID = 123

POST /todos/new <- returns the id of the new resource that was
created with the data provided

POST /todos/123 <- updates an existing resource with ID = 123
but the server may update it additionally

DELETE /todos /123 <- delegates the specified resource with ID =
123

When designing your RESTful web service

Provide distinct URIs for each resource you want to expose such
as /todos/ for to do items, or /users/ for users

Use nouns in the URIs (like purchase) do not make the URIs

verbs (like purchasing) as actions are mapped through the
HTTP methods

GET calls should never change data on the server

Make your service stateless because the client should not
manage information state as your web service could be accessed
by many clients

Some more RESTful URIs

e /vehilicles

e /vehicles/autos

e /vehicles/autos/{make}

e /vehicles/autos/{make}/{model}

e /vehicles/autos/{make}/{model}/{year}

... ahd more

A note about RESTful URIs...

This is NOT RESTful:
/vehicles?type=autos&make=BMW&model=M3&year=2015

This IS RESTful:
/vehicles/autos/BMW/M3/2015

Not only is the RESTful URI easier to construct, but also human
readable!

However, there are times when you need to
add query parameters

 Not everything can be expressed through a URI
e Tryto use the URI structure as much as possible

e However, for things like searches, you might want to get more
power:

/vechicles/autos?sort=pricehigh&limit=20&offset=0

Returns a list of the first 20 automobiles sorted by price.

Constructing URLs

<scheme>: <hierarchical> [7?<query>] [#<fragment>]
Specifically, the <query>:

o starts with ?

e parameters are of the format key=value

e separated with &

e need to be URI encoded

Okay, now we can construct a
RESTful interface

Book inventory web service

Let's say that you have a lot of books and you want a little app to
keep track of all the books that you have

You want to be able enter in all the books that you own
Rank them by your rating

Find books that you have read and ones that you haven't

What data does a book contain?

id (string) primary key

title (string)

author (string)
publicationYear (number)
rating (number)

wasRead (boolean)

Proposed endpoint: Getting all books with
meta data

GET /books
e Limit (humber)
e offset (humber)

e sort (string) "pubYear", "read", "unread", "author", "title",
"purchaseDate"

o filter (string) "pubYear", "read", "unread", "author", "title",
"purchaseDate"

Proposed endpoint: Getting data for one
existing book

GET /books/{id}

e returns the book's data

Proposed endpoint: Editing an existing book

POST /books/{uuid}

e request body includes the data for the book, edited or not

e reflects the successfully saved book back

Proposed endpoint: Deleting an existing book

DELETE /books/{id}
* no request body

e just returns a 200 OK to reflect success

So, here' is our web service

GET /books

PUT /books/new
GET /books/{id}
POST /books/{id}
DELETE /books/{id}

Pretty simple!

What will we use to build this?

« PHP Flat File Database: https:/github.com/wylst/fllat
e /books/index.php <- list and book operations

e .htaccess for routing:

<IfModule mod rewrite.c>
RewriteEngine On
RewriteBase /books
RewriteRule Aindex\.php$ - [L]
RewriteCond %{REQUEST FILENAME} !-f
RewriteCond %{REQUEST FILENAME} !-d
RewriteRule . /books/index.php [L]
</IfModule>

Demo

Building the Book app's REST web service
using PHP

Code can be found at:

http:/coen268.peterbergstrom.com/resources/demos/booksappdemo.zip

You can use have REST service return either
XML or JSON

e XML is not used much anymore

e JSON, however, is dominant

What is JSON?

Stands for JavaScript Object Notation
Uses JavaScript literals to represent data
It is much more lightweight than XML

And as a bonus, JSON is just JavaScript so it is easy to get in and
out of JavaScript-based apps

JSON is built on two structures:

e A collection of key/value pairs as objects.
e Ordered list of values as arrays.

The values in either of these can be objects or arrays to construct
more complex structures.

Let's take a look at the definitions at JSON.org

JSON Object

Values can be primitives or other objects

JSON Object

"title": "APIs and JSON",
"metadata": {
"date": "2014-0/-15T01:32:18-7:00",

"duration": 2

JSON Array

Values can be primitives or other objects

JSON Array

"colors": [

{
"nexValue": "#FF0000",

"displayName": "Red"

"hexValue': "#00OFF0OQ",
"displayName": "Green"

JSON Value

value

JSON String

" or \ or control character

guotation mark

reverse solidus

backspace

formfeed

carriage return

horizontal tab

8

4 hexadecimal digits

JSON Number

number

So, let's see how we can define a
JSON structure for the Books app

GET /books

paginationInfo: {
totalCount: {number}, // total number for query
Limit: {number}, // current Limit returned
offset: {number}, // current offset returned

s

books: [
{book}, {book},

]

What does a Book look like?

{
"1d":5,
"title" :"Harry Potter and the Chamber of Secrets',
"isbn":"0-7475-3849-2",
"pubYear" :1998,
"author":"J. K. Rowling",
"rating":5,
"wasRead":false,
"note" :"Need to read this one.”"

GET /books/5

{
"id":5,
"title" :"Harry Potter and the Chamber of Secrets'”,
"isbn" :"0-7475-3849-2",
"pubYear" :1998,
"author":"J. K. Rowling",
"rating":5,
"wasRead" :false,
"note":"Need to read this one.”
J

Just returns the book's JSON

Now that we have both a REST API
and a JSON structure

Let's get the data into the app!

AJAX
Asynchronous JavaScript and XML

Before AJAX...

Loading data from a server requires a page refresh
Sending data to a server requires a page refresh

This can be jarring to the user

As web apps have become more complex, a lot of state remains
in the browser

This state would be lost if the page refreshes

With AJAX...

Loading data from a server can be done in the background
Sending data to a server can be done in the background
This can be done without the user knowing

Or you can put up Ul indicating that a request is happening

State remains in the browser as it doesn't reload

The XMLHttpRequest (XHR) Object

Allows you to send and receive data without reloading the page
Now, it is a standard object in all browsers

XHRs can be asynchronous so that you can do other work on the
page while waiting for data

While XML is in the name, mostly JSON is used

Creating an XHR

var req = new XMLHttpRequest();
req.open('get', '/autos/bmw');

reqg.onreadystatechange = function() {
if (req.readyState === 4) { // 4 means that the request is done
if (req.status === 200) { // Success!
alert(reqg.responseText);
} else { // Failure
alert('Error: '+req.status);

3
J
J

req.send(null);

However, with $. ajax, things are much
simpler!

$.get('/autos/bmw', function(data) {
alert(data);

1)

You should use jQuery's $. ajax calls as they greatly simplify your
code

Using jQuery's $. ajax is convenient

Makes it easy perform HTTP methods
Very easy to set up post body parameters
Callbacks are easy to set up

Easy to configure mime-types, headers, etc

Built-in support for JSONP and cross domain requests

An example of callbacks

$.ajax('/autos/bmw/"')
.done(function() {
console. log('success');

}).fail(function() {
console.log('failure');

}).always(function() {
console. log('completed');

1)

Saving data in a POST

$.ajax({
type: 'POST',
url: '/autos/,
data: {
model: 'Contour',
make: 'Ford'
ks
}).done(function(result) {
console.log('Saved: ' + result);

1)

A note about cross domain requests

You may have noticed all examples start with a / in their path

That is because they are requests on the same host as the web
page

You cannot make requests from one domain to another due to
security

This is a pretty annoying limitation, but you learn to live with it

JSONP to the rescue!

e |nstead of loading via XHR, the JSON is loaded with an external
<script> tag

e There are no limitations with this method

e However, as it is loaded like a JavaScript file, you need to
execute some code to get the data

 You specify callBack method in your code to be called from
the data loaded in the <script> tag

With $. ajax it is done for you, just set the
option

$.ajax({
type: 'GET',
url: 'http://www.someothersite.com/autos/,
dataType: 'jsonp',
crossDomain: true,
}).done(function(result) {
console. log(result);

1)

Then the URL requested will have ?cal lback={some
$ajaxhandler?} appended

Or, you could make shorter:

$.getISON("http://www.someothersite.com/autos/?callback=?", function(result) {
console(result);

1)

If you are implementing a web service that
supports this...

e Take the specified callback (like ?
callback=mycallbackhandler)

e Wrap the JSON you would return in a function:

mycal lbackhandler({['data’, 'some other data', 'more data'l]});

Demo
Building the Book app's Ul and AJAX calls

Code can be found at:

http:/coen268.peterbergstrom.com/resources/demos/booksappdemo.zip

COEN 168/268

Mobile Web Application Development
APIs and JSON

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

