COEN 168/268

Mobile Web Application Development

Ember Components

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/components/

Introduction

Why do we need Ember Components?

HTML was designed in a time when the browser was a simple
document viewer.

Developers building great web apps need something more.

Instead of trying to replace HTML, however, Ember.js embraces
it

Then adds powerful new features that modernize it for building
web apps.

HTML tags are limiting

e Currently, you are limited to the tags that are created for you by
the W3C.

e Ember gives you a way to define your own, application-specific
HTML tag then implement their behavior using JavaScript

e The W3C is working on a draft for 'custom elements' right now
(http:/www.w3.org/TR/components-intro/)

Ember Components Adhere to the W3C Spec

e Components follows as closely to the Web Components
specification as possible.

e Once Custom Elements are widely available in browsers, you
should be able to easily migrate your Ember components to the
W3C standard and have them be usable by other frameworks.

e Ember is very dedicated to make this standard work

A Short Example

e This lecture will create ablog-post custom element that you
could use again and again in your
application.

 This element can be reused in your code over and over.

= JSBin Save HTML CSS JavaScript Console Output

Rails is omakase

There are lots of a la carte software environments in this world.

Edit title: Rails is omakase

Broken Promises

James Coglan wrote a lengthy article about Promises in node.js.

Edit title: Broken Promises
Auto-run JS M Run with JS

Defining a Component

Defining a Component

e To define a component, create a template whose name starts
with components/.

* To define a new component, {{blog-post}} for example,
create a components/blog-post template.

e Components must have a dash in their name to distinguish them
from current or future HTML elements

If you are including your Handlebars templates inside an HTML file
via <script> tags, it would look like this:

<script type="text/x-handlebars'" id="components/blog-post'>
<h1l>Blog Post</h1>

1
2
3 <p>Lorem ipsum dolor sit amet.</p>
4 </script>

If you're using build tools, create a Handlebars file at templates/
components/blog-post.handlebars.

Having a template whose name starts with components/ creates
a component of the same name. Given the above template, you can
now use the {{blog-post}} custom element:

1 <h1>My Blog</h1l>
2 {{#each}}

3 {{blog-post}}
4 {{/each}}

<!DOCTYPE html>
<html>
<head>
<script src="http://code.jquery.com/jquery.js">
</script>
<script
src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.
0.0/handlebars.js"></script>
<script src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head>
<body>

<script type="text/x-handlebars" data-template-
name="1index">

{{#each}}

{{blog-post}}
{{/each}}
</script>

<script type="text/x-handlebars" data-template-
name="components/blog-post">

<h1>Blog Post</h1>

<p>Lorem -ipsum dolor sit amet.</p>

</script>
</body>
</html>

JavaScript ~

App = Ember.Application.create();

posts = [{
title: "Rails is omakase",

body: "There are lots of a la carte software

environments in this world."

b i

title: "Broken Promises",

body: "James Coglan wrote a lengthy article about

Promises 1in node.js."

315

App.IndexRoute =
model: function() {

}
s

return posts;

Ember.Route.extend ({

Output

Blog Post

Lorem ipsum dolor sit amet.

Blog Post

Lorem ipsum dolor sit amet.

_ Run withJS |

Auto-runJS ™ A

W tomdale

Under the hood

e Each component is backed by an element

e The defaultis to use a <div> element to contain your
component's template

e However, you can customize this

Defining a Component Subclass

o Often times, your components will just encapsulate certain
snippets of Handlebars templates that you find yourself using
over and over.

e |n those cases, you do not need to write any JavaScript at all.

e Just define the Handlebars template as described above and use
the component that is created.

Defining a Component Subclass

e |f you need to customize the behavior of the component you'll
need to define a subclass of Ember . Component.

 You would need a custom subclass if you wanted to:
e Change a component's element
e Respond to actions from the component's template

e Manually make changes to the component's element using
JavaScript.

Defining a Component Subclass

e Knows which subclass powers a component based on name.
 For example, if you have a component called blog-post:

e You would create a subclass called
App.BlogPostComponent.

e |f your component was called audio-controls, the class name
would be App . AudioControlsComponent.

Ember looks for a class with the camelized name followed by
Component.

Therefore, it will look like this:

Component Name Component Class
blog-post App.BlogPostComponent
audio-player-controls App .AudioPlayerControlsComponent

Passing Properties to a Component

Passing Properties to a Component

By default a component does not have access to properties in the
template scope in which it is used.

For example, imagine you have a blog-post component that is
used to display a blog post:

1 <script type="text/x-handlebars" id="components/blog-post">

2 <h1>Component: {{title}}</hl1>
3 <p>Lorem ipsum dolor sit amet.</p>
4 </script>

You can see that it has a {{title}} Handlebars expression to
print the value of the title property inside the <h1>.

Now imagine we have the following template and route:

App.IndexRoute = Ember.Route.extend({
model: function() {
return {
title: "Rails is omakase"
s
by
1)

NOYOUhn p NN BE

1 {{! index.handlebars }}
2 <h1>Template: {{title}}</hl>

5 {{blog-post}}

The first <h1> (from the outer template) displays the title
property, but the second <h1> (from inside the component) is
empty.

HTML ~

<!DOCTYPE html>

<html>

<head>

<script src="http://code.jquery.com/jquery.js">
</script>

<script

src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.

0.0/handlebars.js"></script>
<script src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head>
<body>
<script type="text/x-handlebars"
id="components/blog-post">
<hl1>Component: {{title}}</hl>
<p>Lorem ipsum dolor sit amet.</p>
</script>

<script type="text/x-handlebars" -id="index">
<hl>Template: {{title}}</h1>
{{blog-post}}
</script>
</body>
</html>

JavaScript v

App = Ember.Application.create();

App.IndexRoute = Ember.Route.extend({
model: function() {
return {
title: "Rails is omakase"
}s
}
1}

Output

| Run with JS |

Auto-run JS [QI A

Template: Rails is omakase

Component:

Lorem ipsum dolor sit amet.

..' tomdale
“‘ 4

We can fix this by making the title property available to the
component:

1 {{blog-post title=title}}

This will make the title property in the outer template scope
available inside the component's template using the same name,
title.

HTML ~

<!DOCTYPE html>

<html>

<head>

<script src="http://code.jquery.com/jquery.js">
</script>

<script

src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.

0.0/handlebars.js"></script>
<script src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head>
<body>
<script type="text/x-handlebars"
id="components/blog-post">
<hl>Component: {{title}}</hl>
<p>Lorem -1ipsum dolor sit amet.</p>
</script>

<script type="text/x-handlebars" -id="index">
<hl>Template: {{title}}</h1>
{{blog-post title=title}}
</script>
</body>
</html>

JavaScript v

App = Ember.Application.create();

App.IndexRoute = Ember.Route.extend({
model: function() {
return {
title: "Rails is omakase"
15
}
1

Output

| Run with JS

Auto-run JS [Y] A

Template: Rails is omakase

Component: Rails is omakase

Lorem ipsum dolor sit amet.

'] tomdale

If, In the above example, the model's title property was instead
called name, we would change the component usage to:

1 {{blog-post title=name}}

In other words, you are binding a named property from the outer
scope to a named property in the component scope, with the
syntax componentProperty=outerProperty.

HTML ~

<!DOCTYPE html>

<html>

<head>

<script src="http://code.jquery.com/jquery.js">
</script>

<script

src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.

0.0/handlebars.js"></script>
<script src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head>
<body>
<script type="text/x-handlebars"
id="components/blog-post">
<hl>Component: {{title}}</hl1l>
<p>Lorem ipsum dolor sit amet.</p>
</script>

<script type="text/x-handlebars" -id="index">
<hl>Template: {{name}}</h1l>
{{blog-post title=name}}
</script>
</body>
</html>

JavaScript ~

App = Ember.Application.create();

App.IndexRoute = Ember.Route.extend({
model: function() {

}
s

return {

}s

name:

"Rails 1is omakase"

Output

| Run with JS

Auto-runJS ™ A

Template: Rails is omakase

Component: Rails is omakase

Lorem ipsum dolor sit amet.

'] tomdale

These properties are bound

e |tis important to note that the value of these properties is
bound.

e Wether you change the value on the model or inside the
component, the values stay in sync.

<head>
<script src="http://code.jquery.com/jquery.js">

</5°f1pt> App = Ember.Application.create();
<script

o . o o [] [J
srczn//cdnjs.clguﬁflare.c-:om/ajax/'L'lbs/hand'Lebars.Js/l. App.IndexRoute = Ember.Route.extend({ Template: Ralls lS Omakase
0.0/handlebars.js"></script> model: function() {
<script src="http://builds.emberjs.com/ember- return {

latest.js"></script> . "Raid : " ° °
<meta charset=utf-8 /> yy e e s onslase Component: Rails is omakase
<title>JS Bin</title> }
</head> 1
<body>

<script type="text/x-handlebars"
id="components/blog-post"> Edit title in component: Rails is omakase

<hl1>Component: {{title}}</hl>

<p>Lorem -ipsum dolor sit amet.</p> e er . S
<g>Ed1't tizle in component: {{i r/13ut type="text" Edit title in outer template: Rails is omakase
value=title}}</p>
</script>

JavaScript v Output Run with JS Auto-run JS [Y] A

Lorem ipsum dolor sit amet.

<script type="text/x-handlebars" id="index">
<hl>Template: {{name}}</h1l>
{{blog-post title=name}}
<p>Edit title in outer template: {{input
type="text" value=name}}</p>
</script>

</body> ..l tomdale
</html> L

You can also bind properties from inside an {{#each?}?} loop. This

will create a component for each item and bind it to each model in
the loop.

1 {{#each}}
2 {{blog-post title=title}}
5 {{/each}}

<head>
<script src="http://code.jquery.com/jquery.js">

</5°f1pt> App = Ember.Application.create();
<script

o . o o [] [J
srczn//cdnjs.clguﬁflare.c-:om/ajax/'L'lbs/hand'Lebars.Js/l. App.IndexRoute = Ember.Route.extend({ Template: Ralls lS Omakase
0.0/handlebars.js"></script> model: function() {
<script src="http://builds.emberjs.com/ember- return {

latest.js"></script> . "Raid : " ° °
<meta charset=utf-8 /> yy e e s onslase Component: Rails is omakase
<title>JS Bin</title> }
</head> 1
<body>

<script type="text/x-handlebars"
id="components/blog-post"> Edit title in component: Rails is omakase

<hl1>Component: {{title}}</hl>

<p>Lorem -ipsum dolor sit amet.</p> e er . S
<g>Ed1't tizle in component: {{i r/13ut type="text" Edit title in outer template: Rails is omakase
value=title}}</p>
</script>

JavaScript v Output Run with JS Auto-run JS [Y] A

Lorem ipsum dolor sit amet.

<script type="text/x-handlebars" id="index">
<hl>Template: {{name}}</h1l>
{{blog-post title=name}}
<p>Edit title in outer template: {{input
type="text" value=name}}</p>
</script>

</body> ..l tomdale
</html> L

Wrapping Content in a Component

Sometimes, you may want to define a component that wraps
content provided by other templates.

For example, imagine we are building a blog-post component
that we can use in our application to display a blog post:

1 <script type="text/x-handlebars" id="components/blog-post">
2 <hl>{{title}}</h1>

3 <div class="body">{{body}}</div>

4 </script>

Now, we can use the {{blog-post}} component and pass it
properties in another template:

1 {{blog-post title=title body=body}}

HTML ~

<!DOCTYPE html>

<html>

<head>

<script src="http://code.jquery.com/jquery.js">
</script>

<script

src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.

0.0/handlebars.js"></script>
<script src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head>
<body>
<script type="text/x-handlebars" data-template-
name="1index">
{{blog-post title=title body=body}}
</script>

<script type="text/x-handlebars" -id="components/blog-

post'">

<hl>{{title}}</h1>

<div class="body">{{body}}</div>
</script>
</body>

</html>

JavaScript ~

App = Ember.Application.create();

App.IndexRoute = Ember.Route.extend({
model: function() {
return {

title: "Top 2 Paula Cole Songs",

body: "1. Where Have All the Cowboys Gone? 2.

Don't Want to Wait"

}
1}

}s

I

Output

| Run with JS |

Auto-runJS @ A

Top 2 Paula Cole Songs

1. Where Have All the Cowboys Gone? 2. | Don't Want to

Wait

| ..| tomdale
ot

Block Form

e |n previous case, the content came from the model.

e But what if we want the developer using our component to be
able to provide custom HTML content?

e Components support being used in block form

Block Form

e |n block form, components can be passed a Handlebars template
that is rendered inside the component's template wherever the
{{yield}} expression appears.

e To use the block form, add a # character to the beginning of the
component name, then make sure to add a closing tag.

e |n that case, we can use the {{blog-post}} componentin
block form and tell Ember where the block content should be
rendered using the{{yield}} helper.

To update the example above, we'll first change the component's
template:

1 <script type="text/x-handlebars" id="components/blog-post'">
2 <hl1>{{title}}</hl1>

3 <div class="body">{{yield} }</div>

4 </script>

You can see that we've replaced {{body}} with {{yield}}. This
tells Ember that this content will be provided when the component
Is used.

Next, we'll update the template using the component to use the
block form:

1 {{#blog-post title=title}}
2 <p class="author">by {{author} }</p>

5 {{body};
4 {{/blog-post}}

HTML ~ JavaScript v Output | Run with JS | Auto-run JS @ A

<!DOCTYPE html> App = Ember.Application.create();

<html>

<head> App.IndexRoute = Ember.Route.extend({ Top 2 PaUIa COIe songs
<script src="http://code.jquery.com/jquery.js"> model: function() {

</script> return {

<script title: "Top 2 Paula Cole Songs",

src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1. author: "Tom Dale",

0.0/handlebars.js"></script> body: "1. Where Have All the Cowboys Gone? 2. I by Tom Dale

<script src="http://builds.emberjs.com/ember- Don't Want to Wait" 1. Where Have All the Cowboys Gone? 2. | Don't Want to
latest.js"></script> 15 Wait

<meta charset=utf-8 /> }

<title>JS Bin</title> s

</head>

<body>

<script type="text/x-handlebars" data-template-
name="1index">
{{#blog-post title=title}}
<p class="author">by {{author}}</p>
{{body}}

{{/blog-post}}
</script>

<script type="text/x-handlebars" -id="components/blog-

post'>
<h1>{{title}}</h1> tomdale
<div class="body">{{yield}}</div> X

</script>

A Note About Scope

e |t's important to note that the template scope inside the
component block is the same as outside.

e |f a property is available in the template outside the component,
it is also available inside the component block.

e The next slides shows the concept

SSCr IpL

src="//cdnjs.cloudflare.com/ajax/libs/handlebars.js/1.

0.0/handlebars.js"></script>
<script src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head>
<body>
<script type="text/x-handlebars" data-template-
name="1index">
<p>The <code>name</code> property outside the
component's template: {{name}}</p>
{{#my-component}}
The <code>name</code> property inside the
component's block template: {{name}}
{{/my-component}}
</script>

<script type="text/x-handlebars" data-template-
name="components/my-component">
<p>{{yield}}</p>
<p>The <code>name</code> property in the
component's template: {{name}}</p>
</script>
</body>
</html>

JavaScript v

App = Ember.Application.create();

App.IndexRoute = Ember.Route.extend({
model: function() {
return { name: "Girl Talk" }
}
s

> @ 1 error

Output Runwith)s | Auto-runJS ™ A

The name property outside the component's template: Girl Talk
The name property inside the component's block template: Girl Talk

The name property in the component's template:

H tomdale

Customizing A Component's
Element

2

By Default, Components are <div> elements

By default, each component is backed by a <div> element.

If you were to look at a rendered component in your developer
tools, you would see a DOM representation that looked
something like:

<div 1d="emberl80" class="ember-view'>
<h1>My Component</hl>
</div>

Customizing the Element

To use a tag other than div, subclass Ember . Component and
assign it a tagName property. This property can be any valid
HTML5 tag name as astring.

1 App.NavigationBarComponent = Ember.Component.extend({
2 tagName: 'nav'

1)

WN

{{! templates/components/navigation-bar }}

{{#link-to 'home'}}Home{{/link-to}}</L1i>
{{#link-to 'about'}}About{{/link-to}}</L1i>

uvr h W DN B

Customizing Class Names

You can also specify which class names are applied to the
component's element by setting its classNames property to an
array of strings:

1 App.NavigationBarComponent = Ember.Component.extend({
2 classNames: ['primary']

5 1)

Customizing Class Names Via Bindings

If you bind to a Boolean property, the class name will be added or
removed depending on the value:

1 App.TodoltemComponent = Ember.Component.extend({
2 classNameBindings: ['isUrgent'],
3 isUrgent: true

4 });

This component would render the following:

1 <div class="ember-view is-urgent'></div>

If isUrgent is changed to false, then the is-urgent class

name will be removed. By default the boolean properties with be
dasherized.

By default, the name of the Boolean property is dasherized. You
can customize the class name applied by delimiting it with a colon:

1 App.TodoltemComponent = Ember.Component.extend({
2 classNameBindings: ['isUrgent:urgent'],
3 isUrgent: true

4 1)
This would render this HTML:

1 <div class="ember-view urgent'">

Besides the custom class name for the value being true, you can
also specify a class name which is used when the value is false:

1 App.TodoltemComponent = Ember.Component.extend({
2 classNameBindings: ['isEnabled:enabled:disabled’],

3 1skEnabled: false
4 3);

This would render this HTML:

<div class="ember-view disabled">

You can also specify a class which should only be added when the
property is false by declaring classNameBindings like this:

1 App.TodoltemComponent = Ember.Component.extend({
2 classNameBindings: ['isEnabled: :disabled'],
3 isEnabled: false

4 1)
This would render this HTML:

1 <div class="ember-view disabled">

If the isEnabled property is set to true, no class name is added:

<div class="ember-view'">

If the bound value is a string, that value will be added as a class
name without modification:

1 App.TodoltemComponent = Ember.Component.extend({
2 classNameBindings: ['priority’'],
3 priority: 'highestPriority'

4 1)
This would render this HTML:

1 <div class="ember-view highestPriority">

Customizing Attributes

You can bind attributes to the DOM element that represents a
component by using attributeBindings:

1 App.LinkItemComponent = Ember.Component.extend({
2 tagName: 'a’,

3 attributeBindings: ['href'],

4 href: "http://emberjs.com"
5

1)

You can also bind these attributes to differently named properties:

1 App.LinkItemComponent = Ember.Component.extend({
2 tagName: 'a',

3 attributeBindings: ['customHref:href'],

<. customHref: "http://emberjs.com"
5

1)

Example

Here is an example todo application that shows completed todos
with a red background...

src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head> }
<body>

<script type="text/x-handlebars"
data-template-name="application">

<h1>Todos</h1>

{{#each}}

{{todo-1item title=title

isDone=isDone}}

{{/each}}

</script>

CSS ~

1li.is-done {

<script type="text/x-handlebars"
data-template-name="components/todo-
item">

<label>{{input type="checkbox"

checked=1isDone}} {{title}}</label>

</script>
</body>
</html>

background-color:

red;

JavaScript v

App = Ember.Application.create();

todos = [{
title: "Learn Ember.js",
isDone: false

b, {
title: "Make awesome web apps",
isDone: true

315

App.ApplicationRoute =
Ember.Route.extend ({
model: function() {
return todos;
}

1

App.TodoItemComponent =

Ember.Component.extend({
tagName: 'li',
classNameBindings: ['isDone']

IO

Output Runwith)s | Auto-runJS ™ A

Todos

e [| Learn Ember.js

‘ ..| tomdale
ot

Handling User Interaction With
Actions

Handling User Interaction With Actions

e Components allow you to define controls that you can reuse
throughout your application.

e |f they're generic enough, they can also be shared with others
and used in multiple applications.

e To make a reusable control useful, however, you first need to
allow users of your application to interact with it.

Use the {{action}?} helper

 You can make elements in your component interactive by using
the {{action}} helper.

e Thisis the same {{action}?} helperyou use in application

templates, but it has an important difference when used inside a
component.

e |nstead of sending an action to the template's controller, then
bubbling up the route hierarchy, actions sent from inside a
component are sent directly to the component's
Ember . Component instance, and do not bubble.

For example, imagine the following component that shows a post's
title. When the title is clicked, the entire post body is shown:

<script type="text/x-handlebars" id="components/post-summary">
<h3 {{action "toggleBody"}}>{{title}}</h3>
{{#1f isShowingBody}}

1
2
3
4 <p>{{{body}}}</p>
5 {{/if}}

6

</script>

App.PostSummaryComponent = Ember.Component.extend({
actions: {
toggleBody: function() {
this.toggleProperty('isShowingBody');

NOYUT AN DN P

0.0/handlebars.js"></script>
<script src="http://builds.emberjs.com/ember-
latest.js"></script>
<meta charset=utf-8 />
<title>JS Bin</title>
</head>
<body>
<script type="text/x-handlebars" data-template-

name="1index">

{{#each}}

{{post-summary title=title body=body}}

{{/each}}
</script>

<script type="text/x-handlebars"

id="components/post-summary">

<h3 {{action "toggleBody"}}>{{title}}</h3>

{{#if disShowingBody}}

<p>{{{body}}}</p>

{{/if}}
</script>
</body>
</html>

JavaScript v

App = Ember.Application.create();

posts = [{

title: "Rails is omakase",
body: "There are lots of a la carte software

environments in this world."

b i

title: "Broken Promises",
body: "James Coglan wrote a lengthy article about

Promises 1in node.js."

315

App.IndexRoute = Ember.Route.extend({

model: function() {
return posts;
}

1

App.PostSummaryComponent = Ember.Component.extend({

actions: {
toggleBody: function() {
this.toggleProperty('isShowingBody');
}
}

s

Output

Rails is omakase

| Run with JS |

Auto-run JS @ A

There are lots of a la carte software environments in this world.

Broken Promises

pwagenet

The {{action}} helper can accept arguments, listen for different
event types, control how action bubbling occurs, and more.

For details about using the {{action}} helper, see the Actions
section of the Templates chapter.

Sending Actions From Components
To Your App

Sending Actions From Components To Your
App

When a component is used inside a template, it has the ability to
send actions to that template's controller and routes.

These allow the component to inform the app when important
events, such as the user clicking a particular element in a
component, occur.

Like the {{action}} Handlebars helper, actions sent from
components first go to the template's controller

If not handled there, it will bubble up the route's hierarchy

Actions Need to be Specified

Components are designed to be reusable across different parts
of your application.

In order to be reusable, it's important that the actions that your
components send be specified when the component is used in a
template.

Instead of sending a generic click action, you want to specify
which click action it should be.

Luckily, components have a sendAction() method that allows
them to send actions specified when used in a template.

Sending a Primary Action

e Many components only send one kind of action.

e For example, a button component might send an action when it
Is clicked on; this is the primary action.

To set a component's primary action, set its action attribute in
Handlebars:

1 {{my-button action="showUser"}}

This tells the my-button component that it should send the
showUser action when it triggers its primary action.

So how do you trigger sending a component's primary action? After
the relevant event occurs, you can call the sendAction() method
without arguments:

1 App.MyButtonComponent = Ember.Component.extend({
2 click: function() {
3 this.sendAction();

4 3
> 1)

In the above example, the my-button component will send the
showUser action when the component is clicked.

Sending Parameters with an Action

 You may want to provide additional context to the route or
controller handling an action.

e For example, a button component may want to tell a controller
not only that an item was deleted, but also which item.

To send parameters with the primary action, call sendAction()
with the string 'action' as the first argument and any additional
parameters following it:

1 this.sendAction('action', paraml, paraml);

For example, imagine we're building a todo list that allows the user
to delete a todo:

1 App.IndexRoute = Ember.Route.extend({
2 model: function() {

3 return {

4 todos: [{

5 title: "Learn Ember.js"
6 1 {

7 title: "Walk the dog"

8 1]

9 }s

10 3,

11

12 actions: {
13 deleteTodo: function(todo) {

14 var todos = this.modelFor('index').todos;
15 todos.removeObject(todo);

16 3

17 }

18 });

1 {{! index.handlebars }}

2

5 {{#each todo in todos}}

4 <p>{{todo.title}} <button {{action "deleteTodo" todo}}>Delete</button></p>

5 {{/each}}

We want to update this app so that, before actually deleting a todo,
the user must confirm that this is what they intended.

In the component, when triggering the primary action, we'll pass an
additional argument that the component user can specify:

1 App.ConfirmButtonComponent = Ember.Component.extend({
2 actions: {

3 showConfirmation: function() {

4 this.toggleProperty('isShowingConfirmation');
5 I

6

7/ confirm: function() {

3 this.toggleProperty('isShowingConfirmation');
9 this.sendAction('action', this.get('param'));
10 }

11 +

12 3);

1 {{#1if isShowingConfirmation}}
2 <button {{action "confirm"}}>Click again to confirm</button>

5 {{else}}
4 <button {{action "showConfirmation"}}>{{title}}</button>

5 {{/1f}}

Now we can update our initial template and replace the
{{action}} helper with our new component:

1 {{#each todo in todos}}
2 <p>{{todo.title}} {{confirm-button title="Delete" action="deleteTodo" param=todo}}</p>

3 {{/each}}

L e L e T

<title>JS Bin</title>
</head>
<body>
<script type="text/x-handlebars" data-template-
name="index">
{{#each todo in todos}}
<p>{{todo.title}} {{confirm-button
title="Delete" action="deleteTodo" param=todo}}</p>

{{/each}}
</script>

<script type="text/x-handlebars" data-template-
name="components/confirm-button">
{{#if disShowingConfirmation}}
<button {{action "confirm"}}>Click again to
confirm</button>

{{else}}

<button {{action "showConfirmation"}}>{{title}}

</button>
{{/if}}
</script>
</body>
</html>

App.IndexRoute = Ember.Route.extend({
model: function() {

return {
todos: [{
title: "Learn Ember.js"
b {
title: "Walk the dog"
]
}s

s

actions: {
deleteTodo: function(todo) {
var todos = this.modelFor('index').todos;
todos.removeObject(todo) ;

}
}
s

App.ConfirmButtonComponent = Ember.Component.extend({

actions: {
showConfirmation: function() {
this.toggleProperty('isShowingConfirmation');

3,

confirm: function() {
this.toggleProperty('isShowingConfirmation');
this.sendAction('action', this.get('param'));

}

Output

Learn Ember.js

. Click again to confirm

Walk the dog

| Delete |

| Run with JS |

Auto-runJS ™ A

w tomdale

Sending Multiple Actions

e Depending on the complexity of your component, you may need
to let users specify multiple different actions for different events
that your component can generate.

e For example, imagine that you're writing a form component that
the user can either submit or cancel. Depending on which button
the user clicks, you want to send a different action to your
controller or route.

You can specify which action to send by passing the name of the
event as the first argument to sendAction(). For example, you
can specify two actions when using the form component:

1 {{user-form submit="createUser" cancel="cancelUserCreation"}}

In this case, you can send the createUser action by calling
this.sendAction('submit'), or send the
cancelUserCreation action by calling
this.sendAction('cancel').

<meta charset=utf-8 /> App = Ember.Application.create();

<title>JS Bin</title> Output Runwith)s | Auto-runJS @ A
</head> App.IndexController = Ember.ObjectController.extend({
<body> actions: {

<script type="text/x-handlebars" data-template- createUser: function(user) { Create New User

name="4ndex"> alert("Created user " + user.name + " with bio "

<h1>Create New User</h1l> + user.bio + ".");
{{user-form submit="createUser" 1 Name
cancel="cancelUserCreation" submitTitle="Create
User"}} cancelUserCreation: function() {
</script> alert("Canceled user creation.");
} Bio Z
<script type="text/x-handlebars" data-template- }
name="components/user-form"> s | Cancel | | Create User |

<form {{action "submit" on="submit"}}>

<p><label>Name {{input type="text" value=name}} App.UserFormComponent = Ember.Component.extend({

</label></p> act10n§: { _
<p><label>Bio {{textarea value=bio}}</label></p> submit: function() {
this.sendAction('submit', {
<button {{action "cancel"}}>Cancel</button> name: this.get('name'),
<input type="submit" {{bindAttr bio: this.get('bio")
value=submitTitle}}> 1});
</form> },
</script>

</body> cancel: function() {
</html> this.sendAction('cancel');

}
} tomdale

})s

Actions That Aren't Specified

If someone using your component does not specify an action for a
particular event, calling sendAction() has no effect.

For example, if you define a component that triggers the primary
action on click:

1 App.MyButtonComponent = Ember.Component.extend({
2 click: function() {
3 this.sendAction();
4

> 1)

Using this component without assigning a primary action will have
no effect if the user clicks it:

1 {{my-button}}

Thinking About Component Actions

* |n general, you should think of component actions as translating
a primitive event (like a mouse click or an <audio> element's

pause event) into actions that have meaning within your
application.

e This allows your routes and controllers to implement action
handlers with names like deleteTodo or songDidPause
instead of vague names like click or pause that may be
ambiguous to other developers when read out of context.

Thinking About Component Actions, Cont'd

e Another way to think of component actions is as the public API of
your component.

 Thinking about which events in your component can trigger
actions in their application is the primary way other developers
will use your component.

* |n general, keeping these events as generic as possible will lead
to components that are more flexible and reusable.

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/components/

COEN 168/268

Mobile Web Application Development

Ember Components

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

