COEN 168/268, Summer 2014

Mobile Web Application Development
Ember Data

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/models/

Introduction

Routes Need Models

e Asyou know, every route has an associated model.
 This model is set by implementing a route's model hook.
e By passing the model as an argument to {{link-to}},

e or by calling aroute's transitionTo() method.

In Simple Applications...

 You can get by using jQuery to load JSON data from a server,
then use those JSON objects as models.

 This is how I've done my examples except for the Books Example
where | wrapped the JSON in a basic Ember.0Object

When Your App Becomes More Complicated...

Using a model library that manages:
e Finding models

e Making changes

e Saving them back to the server

can dramatically simplify your code while improving the robustness
and performance of your application.

Many Apps Use Ember Data

e Tightly integrates with Ember.js to make it easy to retrieve
records from a server, cache them for performance, save updates
back to the server, and create new records on the client.

 Without any configuration, Ember Data can load and save

records and their relationships served via a RESTful JSON API,
provided it follows certain conventions.

Ember Data Adapts To All JSON APIs

e |f you need to integrate your Ember.js app with existing JSON

APIls that do not follow strong conventions, Ember Data is
designed to be easily configurable to work with whatever data

your server returns.

e Ember Data is also designed to work with streaming APIs like
socket.io, Firebase, or WebSockets. You can open a socket to
your server and push changes to records into the store whenever

they occur.

How Can You Get Ember Data?

e Currently, Ember Data ships as a separate library from Ember.js.

e Until Ember Data is included as part of the standard distribution,
you can get a copy of the latest passing build from:

e emberjs.com/builds

e https://github.com/emberjs/data

Ember-CLI Includes Ember Data By Default

In your files, just import it:

import Ember from "ember",
import DS from "ember-data';

export default DS.Model.extend({
title: DS.attr('string'),
isCompleted: DS.attr('boolean'),
quickNotes: DS.hasMany('quick-note')

1)

O NOUT A WWNWDN B

Ember Data Core Concepts

Learning to use Ember Data is easiest once you understand some
of the concepts that underpin its design.

Store

The store is the central repository of records in your application.

You can think of the store as a cache of all of the records
available in your app.

Both your application's controllers and routes have access to this
shared store; when they need to display or modify a record, they
will first ask the store for it.

This instance of DS . Store is created for you automatically and
Is shared among all of the objects in your application.

You will use the store to retrieve records, as well to create new
ones. For example, we might want to find an App . Person model
with the ID of 1 from our route's model hook:

1 App.IndexRoute = Ember.Route.extend({
2 model: function() {

3 return this.store.find('person', 1);
4

> 1)

Models

e A model is a class that defines the properties and behavior of the
data that you present to the user.

e Anything that the user expects to see if they leave your app and
come back later (or if they refresh the page) should be
represented by a model.

For example, if you were writing a web application for placing
orders at a restaurant, you might have models like Order,
LineItem, and Menultem.

Fetching orders becomes very easy:

1 this.store.find('order');

That was easy, wasn't it?

Models define the type of data that will be provided by your server.
For example, a Person model might have a firstName attribute
that is a string, and a birthday attribute that is a date:

1 App.Person = DS.Model.extend({
2 firstName: DS.attr('string'),
3 birthday: DS.attr('date')

4 1)

A model also describes its relationships with other objects. For
example, an Order may have many LinelItems, and a Lineltem
may belong to a particular Order.

App.Order = DS.Model.extend({
Lineltems: DS.hasMany('lineltem')

1)

App.Lineltem = DS.Model.extend({
order: DS.belongsTo('order')

1)

NOOUr p NN P

Models don't have any data themselves; they just define the
properties and behavior of specific instances, which are called
records.

Records

e Arecord is an instance of a model that contains data loaded
from a server.

e Your application can also create new records and save them back
to the server.

e Arecord is uniquely identified by its model type and id.

For example, if you were writing a contact management app, you
might have a model called Person. An individual record in your
app might have a type of Person and an ID of 1 or steve-
buscemi.

1 this.store.find('person', 1); // => { id: 1, name: 'steve-buscemi' }

|IDs are usually assigned by the server when you save them for the
first time, but you can also generate |IDs client-side.

Adapter

 An adapter is an object that knows about your particular server
backend

e |s responsible for translating requests for and changes to records
into the appropriate calls to your server.

For example, if your application asks for a person record with an
ID of 1, how should Ember Data load it?

Is it over HTTP or a WebSocket? If it's HTTP, is the URL /person/
1 or /resources/people/17?

The adapter is responsible for answering all of these questions.

It's the Adapters Job To Help

e Whenever your app asks the store for a record that it doesn't
have cached, it will ask the adapter for it.

e |f you change a record and save it, the store will hand the record
to the adapter to send the appropriate data to your server and
confirm that the save was successful.

Serializer

A serializer is responsible for turning a raw JSON payload
returned from your server into a record object.

JSON APIs may represent attributes and relationships in many
different ways.

For example, some attribute names may be camelCased and
others may be under scored.

When the Adapter gets data back, it will pass through the
serializer to normalize it.

While Most Of You Will Use a Serializer for
JSON...

e Since Ember Data treats these payloads as opaque objects

e There's no reason they couldn't be binary data stored in a BLob
or ArrayBuffer

Automatic Caching

e The store will automatically cache records for you.

e |f arecord had already been loaded, asking for it a second time
will always return the same object instance.

e This minimizes the number of round-trips to the server, and

allows your application to render its Ul to the user as fast as
possible.

For example, the first time your application asks the store for a
person record with an ID of 1, it will fetch that information from
your server.

e However, the next time your app asks for a person with ID 1,
the store will notice that it had already retrieved and cached that
information from the server.

e |nstead of sending another request for the same information, it
will give your application the same record it had provided it the
first time.

This feature—always returning the same record object, no matter
how many times you look it up—is sometimes called an identity
map.

e Using an identity map is important because it ensures that
changes you make in one part of your Ul are propagated to other
parts of the Ul.

e |t also means that you don't have to manually keep records in
sync—you can ask for a record by ID and not have to worry
about whether other parts of your application have already asked
for and loaded it.

Architecture Overview

e The first time your application asks the store for a record, the
store sees that it doesn't have a local copy and requests it from
your adapter.

 Your adapter will go and retrieve the record from your
persistence layer; typically, this will be a JSON representation of
the record served from an HT TP server.

find() promise

find() promise

XHR

2

Requests are Asynchronous

As illustrated in the diagram, the adapter cannot always return
the requested record immediately.

In this case, the adapter must make an asynchronous request to
the server, and only when that request finishes loading can the
record be created with its backing data.

Because of this asynchronicity, the store immediately returns a
promise from the £ind() method.

Similarly, any requests that the store makes to the adapter also
return promises.

Requests are Asynchronous

e Once the request to the server returns with a JSON payload for
the requested record, the adapter resolves the promise it
returned to the store with the JSON.

e The store then takes that JSON, initializes the record with the
JSON data, and resolves the promise returned to your
application with the newly-loaded record.

promise
resolves with record

promise
resolves with JSON

XHR returns

The Cloud

(L

Let's look at what happens if you
request a record that the store
already has in its cache.

*

find() promise
* resolves with record

e |n this case, because the store already knew about the record, it
returns a promise that it resolves with the record immediately.

e It does not need to ask the adapter (and, therefore, the server)
for a copy since it already has it saved locally.

Those were the core concepts

Defining Models

Defining Models

e A modelis a class that defines the properties and behavior of the
data that you present to the user.

 Anything that the user expects to see if they leave your app and
come back later (or if they refresh the age) should be represented
by a model.

For every model in your application, create a subclass of
DS .Model:

1 App.Person = DS.Model.extend();

Now You Can Start Find and Creating Records

When interacting with the store, you will need to specify a record's
type using the model name.

For example, the store's £ind() method expects a string as the
first argument to tell it what type of record to find:

1 store.find('person’', 1);

The table below shows how model names map
to model classes.

Model Name Model Class
‘photo "App.Photo"
"adminUserProfile "App.AdminUserProfile

Defining Attributes

You can specify which attributes a model has by using DS . attr.

1 var attr = DS.attr;

2

5 App.Person = DS.Model.extend({
4 firstName: attr(),

5 LastName: attr(),

6 birthday: attr()

/

1)

Defining Attributes

o Attributes are used when turning the JSON payload returned
from your server into a record, and when serializing a record to
save back to the server after it has been modified.

 You can use attributes just like any other property, including as
part of a computed property.

 Frequently, you will want to define computed properties that
combine or transform primitive attributes.

You Can Use Computed Properties Too

var attr = DS.attr;

1

2

5 App.Person = DS.Model.extend({
4 firstName: attr(),

5 LastName: attr(),
6
/
3

fullName: function() {
return this.get('firstName') + ' ' + this.get('lastName');
9 }.property('firstName', 'lastName')

10 });

2

If You Don't Specify A Type...

If you don't specify the type of the attribute, it will be whatever
was provided by the server.

You can make sure that an attribute is always coerced into a
particular type by passing a type to attr:

App.Person = DS.Model.extend({
birthday: DS.attr('date')

1)

Type Defaults

The default adapter supports attribute types of:
- string
- number
- boolean

- date (ISO-8601 date like 2014-05-27T12:54:01)

Custom adapters may offer additional attribute types, and new
types can be registered as transforms.

Options
DS . attr takes an optional hash as a second parameter, current

options are:

e defaultValue: Pass a string or a function to be called to set
the attribute to a default value if none is supplied.

Example defaultValue

1 var attr = DS.attr;

2

5 App.User = DS.Model.extend({

4 username: attr('string'),

5 email: attr('string'),

6 verified: attr('boolean', {defaultValue: false}),

/ createdAt: DS.attr('string', {

3 defaultValue: function() { return new Date(); }

O

1)
10 });

Defining Relationships

Ember Data includes several built-in
relationship types to help you define how your
models relate to each other.

One-to-One

To declare a one-to-one relationship between two models, use
DS .belongsTo:

1 App.User = DS.Model.extend({

2 profile: DS.belongsTo('profile')
535

4

5 App.Profile = DS.Model.extend({

6 user: DS.belongsTo('user')

7 });

One-to-Many

To declare a one-to-many relationship between two models, use
DS .belongsTo in combination with DS . hasMany, like this:

1 App.Post = DS.Model.extend({
2 comments: DS.hasMany('comment')

5 3);
4

5 App.Comment = DS.Model.extend({
6 post: DS.belongsTo('post')

7 });

Many-to-Many

To declare a many-to-many relationship between two models, use
DS . hasMany:

1 App.Post = DS.Model.extend({
2 tags: DS.hasMany('tag')
535

4

5 App.Tag = DS.Model.extend({
6 posts: DS.hasMany('post')

7 });

Explicit Inverses

e Ember Data will do its best to discover which relationships map
to one another.

* |n the one-to-many code above, for example:

e Ember Data can figure out that changing the comments
relationship should

e Update the post relationship on the inverse because post is
the only relationship to that model.

Explicit Inverses

e However, sometimes you may have multiple belongsTo/
hasManys for the same type.

e You can specify which property on the related model is the
inverse using DS . hasMany's inverse option

var belongsTo = DS.belongsTo,
hasMany = DS.hasMany;

App.Comment = DS.Model.extend({
onePost: belongsTo('post'),
twoPost: belongsTo('post'),
redPost: belongsTo('post'),
bluePost: belongsTo('post')

1)

O 0O NONULT A WNWDN P

Y
N RO

App.Post = DS.Model.extend({
13 comments: hasMany('comment', {
14 inverse: 'redPost'

15 1)
16 3);
You can also specify an inverse on a belongsTo, which works how

you'd expect.

Creating and Deleting Records

Creating Records

You can create records by calling the createRecord method on
the store.

1 store.createRecord('post', {
2 title: 'Rails is Omakase',
3 body: 'Lorem ipsum'

4 1)

Creating Records

e The store object is available in controllers and routes using
this.store.

e Although createRecord is fairly straightforward, the only thing
to watch out for is that you cannot assign a promise as a
relationship, currently.

For example, if you want to set the author property of a post, this
would not work if the user with id isn't already loaded into the
store:

1 var store = this.store;

2

5 store.createRecord('post’', {

4 title: 'Rails 1s Omakase',

5 body: 'Lorem ipsum',

6 author: store.find('user', 1)
/

1)

However, you can easily set the relationship after the promise has
fulfilled:

var store = this.store;

var post = store.createRecord('post’', {
title: 'Rails is Omakase',
body: 'Lorem ipsum'

1)

store.find('user’', 1).then(function(user) {
post.set('author', user);

1)

O 00O NOUT A WNDN B

=
)

Deleting Records

Deleting records is just as straightforward as creating records.
Just call deleteRecord() on any instance of DS . Model.

This flags the record as 1sDeleted and thus removes it from
all() queries on the store.

The deletion can then be persisted using save(). Alternatively,
you can use the destroyRecord method to delete and persist
at the same time.

O 00O NOUT A WNDN P

=
QS

Deleting Records

store.find('post’', 1).then(function (post) {
post.deleteRecord();
post.get('isDeleted'); // => true
post.save(); // => DELETE to /posts/1l

1)

// OR
store.find('post’', 2).then(function (post) {

post.destroyRecord(); // => DELETE to /posts/Z2
1)

Pushing Records Into The Store

Pushing Records Into The Store

e One way to think about the store is as a cache of all of the
records that have been loaded by your application.

e |f aroute or a controller in your app asks for a record, the store
can return it immediately if it is in the cache.

e Otherwise, the store must ask the adapter to load it, which
usually means a trip over the network to retrieve it from the
Server.

Instead of Waiting, You Can Push Records Into the Store Cache

This is useful if you have a good sense of what records the user
will need next.

When they click on a link, instead of waiting for a network
request to finish, Ember.js can render the new template
Immediately. It feels instantaneous.

Another use case for pushing in records is if your application has
a streaming connection to a backend.

If a record is created or modified, you want to update the Ul
immediately.

Pushing Records

* To push a record into the store, call the store's push() method.

e For example, imagine we want to preload some data into the
store when the application boots for the first time.

e We can use the ApplicationRoute to do so. The
ApplicationRoute is the top-most route in the route
hierarchy, and its model hook gets called once when the app
starts up.

var attr = DS.attr;

1

2

5 App.Album = DS.Model.extend({
4 title: attr(),

5 artist: attr(),

6 songCount: attr()

735

8
9

App.ApplicationRoute = Ember.Route.extend({
10 model: function() {

11 this.store.push('album', {

12 id: 1,

13 title: "Fewer Moving Parts",
14 artist: "David Bazan',

15 songCount: 10

16 iDF

17

18 this.store.push('album', {

19 id: 2,

20 title: "Calgary b/w I Can't Make You Love Me/Nick Of Time",
21 artist: "Bon ILver",

22 songCount: 2

23 1)

24 }

25 });

Persisting Records

Persisting Records

e Records in Ember Data are persisted on a per-instance basis.

e Call save() on any instance of DS.Model and it will make a
network request.

e Next, some examples!

Example One Of Persisting Records

1 var post = store.createRecord('post’', {
2 title: 'Rails 1is Omakase',

3 body: 'Lorem ipsum'

4 1);

5

6 post.save(); // => POST to '/posts'

NOyon p NN B

Example Two Of Persisting Records

store.find('post’', 1).then(function (post) {
post.get('title'); // => "Rails 1is Omakase"

post.set('title’, 'A new post');

post.save(); // => PUT to '/posts/1l'
1)

Promises

e save() returns a promise, so it is extremely easy to handle
success and failure scenarios.

e Next, a long example!

O 0O NONULT DN WWNDN B

T S N = W S
O 00 NOUNWNEREOO

var post = store.createRecord('post', {
title: 'Rails is Omakase',
body: 'Lorem ipsum'

1)

var self = this;

function transitionToPost(post) {
self.transitionToRoute('posts.show', post);

b

function failure(reason) {
// handle the error

b

post.save().then(transitionToPost).catch(failure);

// => POST to '/posts'
// => transitioning to posts.show route

Promises even make it easy to work
with failed network requests:

O 0O NONULT DN WWNDN B

T S N = W S
OO ~NOUDAWNROO

var post = store.createRecord('post', {
title: 'Rails is Omakase',
body: 'Lorem ipsum'

1)

var self = this;

var onSuccess = function(post) {
self.transitionToRoute('posts.show', post);

s

var onFail = function(post) {
// deal with the failure here

s

post.save().then(onSuccess, onFail);

// => POST to '/posts'
// => transitioning to posts.show route

You can read more about promises at
https://github.com/tildeio/rsvp.Js

but here is another example showing how to retry persisting

1 function retry(callback, nTimes) {

2 // 1f the promise fails

3 return callback().catch(function(reason) {

£ // 1f we haven't hit the retry limit

5 if (nTimes-- > @) {

6 // retry again with the result of calling the retry callback
/ // and the new retry limit

3 return retry(callback, nTimes);

9

b
10
11 // otherwise, if we hit the retry limit, rethrow the error
12 throw reason;
15 3);
14 }
15

16 // try to save the post up to 5 times
17 retry(function() {

13 return post.save();

19 3}, 5);

Finding Records

Finding Records

The Ember Data store provides a simple interface for finding
records of a single type through the store object's £ind

method.

Internally, the store uses £ind, £findAlLl, and £indQuery
based on the supplied arguments.

The first argument to store. find() is always the record type.

The optional second argument determines if a request is made
for all records, a single record, or a query.

Finding All Records of a Type

1 var posts = this.store.find('post'); // => GET /posts

To get a list of records already loaded into the store, without
making another network request, use al l instead.

1 var posts = this.store.all('post'); // => no network request

find returns a DS.PromiseArray

e findreturnsa DS.PromiseArray that fulfills to a
DS.RecordArray and all directly returns a
DS.RecordArray.

e DS.RecordArray is not a JavaScript array, it is an object that
implements Ember . Enumerable

e This is important because, for example, if you want to retrieve
records by index, the [] notation will not work--you'll have to

use objectAt(index) instead.

Finding a Single Record

e |fyou provide a number or string as the second argument to
store.find(), Ember Data will attempt to retrieve a record of
that with that ID.

e This will return a promise that fulfills with the requested record:

1 var aSinglePost = this.store.find('post', 1); // => GET /posts/1

Querying For Records

e |f £ind is provided a plain object as the second arg, Ember Data
will do a GET request with the object serialized as query params.

e This method returns DS.PromiseArray in the same way as
find with no second argument.

We can search for all person models who have the name Peter:

1 // => GET to /persons?name='Peter'
2 var peters = this.store.find('person', { name: "Peter" });

Integrating with the Route's Model Hook

As discussed earlier, routes are responsible for telling their
template which model to render.

Ember.Route's model hook supports asynchronous values out-
of-the-box.

If you return a promise from the model hook, the router will wait
until the promise has fulfilled to render the template.

Makes it easy to write apps with asynchronous data using Ember
Data.

Just return the requested record from the model hook, and let
Ember deal with figuring out whether a network request is needed
or not.

1 App.Router.map(function() {
2 this.resource('posts');
this.resource('post', { path: ':post_id' });

1)

App.PostsRoute = Ember.Route.extend({
model: function() {
return this.store.find('post');

0O NO U1 AW

2 2

10 3);

11

12 App.PostRoute = Ember.Route.extend({

13 model: function(params) {

14 return this.store.find('post', params.post _id);
15 }

16 })

Working With Records

N

Modifying Attributes

Once a record has been loaded, you can begin making changes
to its attributes.

Attributes behave just like normal properties in Ember.js objects.

Making changes is as simple as setting the attribute you want to
change:

var tyrion = this.store.find('person’', 1);
// ...after the record has loaded
tyrion.set(' firstName', "Yollo");

Modifying Attributes

o All of the Ember.js conveniences are available for modifying
attributes.

 For example, you can use Ember.Object's
incrementProperty helper:

1 person.incrementProperty('age'); // Happy birthday!

Checking for Outstanding Changes

 You can tell if a record has outstanding changes that have not yet
been saved by checking its isDirty property.

 You can also see what parts of the record were changed and

what the original value was using the changedAttributes
function.

e changedAttributes returns an object, whose keys are the

changed properties and values are an array of values
[oldValue, newValue].

Checking for Outstanding Changes

1 person.get('isAdmin'); //=> false
2 person.get('isDirty'); //=> false
5 person.set('isAdmin', true);

4 person.get('isDirty'); //=> true

5 person.changedAttributes(); //=> { isAdmin: [false, true] }

At this point, you can either persist your changes via save() or
you can rollback your changes. Calling rol Lback() reverts all the
changedAttributes to their original value.

cONOUT A WNDN B

person.

person

person

person

person
person

Rolling Back

get('isDirty'); //=> true
.changedAttributes(); //=> { isAdmin:
.rollback();

.get('isDirty’'); //=> false
.get('isAdmin'); //=> false
.changedAttributes(); //=> {}

[false, true] }

Using Fixture Data

e When developing client-side applications, your server may not
have an API ready to develop against.

 The FixtureAdapter allows you to begin developing Ember.js
apps now, and switch to another adapter when your APl is ready
to consume without any changes to your application code.

Getting Started With The FixtureAdapter

Using the fixture adapter entails three very simple setup steps:

1. Create a new store using the fixture adapter and attach it to your
app.

2. Define your model using DS . Model . extend.

3. Attach fixtures(also known as sample data) to the model's class.

Creating a Fixture Adapter
Simply attach it as the ApplicationAdapter property on your
instance of Ember.Application:

1 var App = Ember.Application.create();
2 App.ApplicationAdapter = DS.FixtureAdapter;

Define Your Model

Define a model like normal:

1 App.Documenter = DS.Model.extend({
2 firstName: DS.attr('string'),
3 LastName: DS.attr('string')

4 1)

Attach Fixtures to the Model Class

Attaching fixtures couldn't be simpler. Just attach a collection of
plain JavaScript objects to your Model's class under the FIXTURES

property:

1 App.Documenter.FIXTURES = [
2 { id: 1, firstName: 'Trek', LlastName: 'Glowacki' 3%,

3 { id: 2, firstName: 'Tom' , lastName: 'Dale’ }
4 1;

That's it!

You can now use all of the methods for finding
records in your application. For example:

App.DocumenterRoute = Ember.Route.extend({
model: function() {
// returns a promise that will resolve
// with the record representing Trek Glowacki
return this.store.find('documenter', 1);

O NOUT A WWNWDN B

-
./
.o L

Naming Conventions

Unlike the REST Adapter, the Fixture Adapter does not make any
assumptions about the naming conventions of your model.

As you saw in the example above, if you declare the attribute as
firstName during DS .Model . extend, you use firstName to
represent the same field in your fixture data.

Importantly, you should make sure that each record in your
fixture data has a uniquely identifiable field like 1id

Should you not provide an 1d field in your fixtures, or not
override the primary key, the Fixture Adapter will throw an error.

Connecting to a HTTP Server

Connecting to a HT TP Server

e |f your Ember application needs to load JSON data from an HTTP
server, let's show how to configure Ember Data to load records in

whatever format your server returns.

e The store uses an object called an adapter to know how to
communicate over the network.

e By default, the store will use DS.RESTAdapter, an adapter that
communicates with an HT TP server by transmitting JSON via

XHR.

DS.RESTAdapter Default Behavior

URL Conventions

The REST adapter uses the name of the model to determine what
URL to send JSON to.

For example, if you ask for an App.Photo record by ID:

1 App.PhotoRoute = Ember.Route.extend({

2 model: function(params) {

3 return this.store.find('photo', params.photo_id);
4

> });

The REST adapter will automatically send a GET request to /
photos/1.

The actions you can take on a record map onto the following URLs
in the REST adapter:

Action | HTTP Verb | URL

-ind GET /photos/123
-ind ALL GET /photos
Jpdate PUT /photos/123
Create POST /photos
Delete DELETE /photos/123

JSON Conventions

Given the following models:

1 var attr = DS.attr,

2 hasMany = DS.hasMany,

3 belongsTo = DS.belongsTo;

4

5 App.Post = DS.Model.extend({

6 title: attr(),

/ comments: hasMany('comment'),
3 user:. belongsTo('user')

7 1);

10

11 App.Comment = DS.Model.extend({
12 body: attr()

13 3);

Ember Data expects that a GET request to /posts/1 would return
the JSON in the following format:

1{

2 "post": {

3 "id": 1,

4 "title": "Rails 1s omakase",
5 "comments": ["1", "2"],
6 "user" : "dhh"

7},

8

9 "comments": [{

10 "id": "1",

11 "body": "Rails is unagi"
12 3, {

13 "id". "2",

14 "body": "Omakase O_o"

15 1]

16)

Handling Metadata

Handling Metadata

e Along with the records returned from your store, you'll likely
need to handle some kind of metadata.

e Metadata is data that goes along with a specific model or type
instead of a record.

Pagination is a common example of using
metadata.

Imagine a blog with far more posts than you can display at once.
You might query it like so:

1 var result = this.store.find("post", {
2 limit: 10,

3 offset: ©

4 3);

Pagination is a common example of using
metadata.

To get different pages of data, you'd simply change your offset in
iIncrements of 10.

So far, so good.
But how do you know how many pages of data you have?

Your server would need to return the total number of records as
a piece of metadata.

By default, Ember Data's JSON deserializer looks for a meta key:

1{

2 "post": {

3 "id": 1,

Z "title": "Progressive Enhancement is Dead",
5 "comments": ["1", "2"7,

6 "links": {

7/ "user": "/people/tomdale”
3 I

9 // ...

10},

11

12 "meta": {

13 "total": 100

14 }

15 3

Accessing Metadata

e The metadata for a specific type is then set to the contents of
meta.

 You can access it either with store.metadataFor, which is
updated any time any query is made against the same type:

1 var meta = this.store.metadatafFor('"post");

Accessing Metadata, Cont'd

Or you can access the metadata just for this query:

1 var meta = result.get("content.meta");

Now, meta.total can be used to calculate how many pages of
posts you'll have.

You can also customize metadata extraction by overriding the
extractMeta method.

For example, if instead of a meta object, your server simply
returned:

1{

2 "post": [

3 // ...

4 1,

5 "total": 100
6 }

You could extract it like so:

1 App.ApplicationSerializer = DS.RESTSerializer.extend({

2 extractMeta: function(store, type, payload) {

3 if (payload && payload.total) {

4 // sets the metadata for "post"

5 store.metaForType(type, { total: payload.total });

6 // keeps ember data from trying to parse "total" as a record
/ delete payload.total;

3

3
10 });

Customizing Adapters

By Default Ember Comes With Several Built-in Adapters

e DS.Adapter is the basic adapter with no functionality.

e DS.FixtureAdapter is an adapter that loads records from
memory. Its primarily used for development and testing.

e DS.RESTAdapter is the most commonly extended adapter that
uses JSON and REST

e DS.ActiveModelAdapter is a specialized version of the
RESTAdapter that is set up to work out of the box with Rails-
style REST APIs.

Sometimes You Need Something Custom

e To customize the REST adapter, define a subclass of
DS.RESTAdapter and name it App.ApplicationAdapter.

 You can then override its properties and methods to customize
how records are retrieved and saved.

Customizing a Specific Model

It's entirely possible that you need to define options for just one
model instead of an application-wide customization.

In that case, you can create an adapter named after the model you
are specifying:

1 App.PostAdapter = DS.RESTAdapter.extend({
2 namespace:. 'api/vZ2',
host: 'https://api.exampleZ.com'

)5

App.PhotoAdapter = DS.RESTAdapter.extend({
namespace. 'api/vl',
host: 'https://api.example.com'

)5

O 0 N O U1 A WN

This allows you to easily connect to multiple API versions
simultaneously or interact with different domains on a per model
basis.

Customizing URLs

Endpoint Path Customization

The namespace property can be used to prefix requests with a
specific url namespace.

1 App.ApplicationAdapter = DS.RESTAdapter.extend({
2 namespace: 'api'

5 3);
Requests for App . Person would now target /api/people/1.

Endpoint Path Customization

For example, if you are using a versioned JSON API, a request for a
particular person might go to /api/vl/people/1.

In that case, set namespace property to api/vl.

1 App.ApplicationAdapter = DS.RESTAdapter.extend({
2 namespace: 'api/vl'

5 3);

Requests for a person with ID 1 would now go to /api/vl/
people/1l.

URL Hosts

e |f your JSON API runs on a different domain than the one serving
your Ember app, you can change the host used to make HTTP
requests.

 Note that in order for this to work, you will need to be using a
browser that supports CORS (http:/www.html5rocks.com/en/
tutorials/cors/), and your server will need to be configured to
send the correct CORS headers.

To change the host that requests are sent to, set the host
property:

1 App.ApplicationAdapter = DS.RESTAdapter.extend({
2 host: 'https://api.example.com'

5 1)

Requests for a person with ID 1 would now target https://
apl.example.com/people/1.

Custom HTTP Headers

e Some APIs require HTTP headers, e.g. to provide an API key.

e Arbitrary headers can be set as key/value pairs on the
RESTAdapter's headers property and Ember Data will send
them along with each ajax request.

Custom HTTP Headers Example

App.ApplicationAdapter = DS.RESTAdapter.extend({
headers: {
"APL KEY": "secret key",
"ANOTHER HEADER": "Some header value"

)
1)

Requests for any resource will include the following HTTP headers.

O LT AW DN -

1 ANOTHER_HEADER: Some header value
2 API KEY: secret key

Path Customization

e By default the RESTAdapter will attempt to pluralize and
camelCase the model name to generate the path name.

e |f this convention does not conform to your backend you can
override the pathForType method.

For example, if you did not want to pluralize model names and
needed underscore_case instead of camelCase you could override

the pathForType method like this:

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 pathForType: function(type) {
3 return Ember.String.underscore(type);

4 3
> 1)

Requests for App . Person would now target /person/1.
Requests for App.UserProfile would now target /
user profile/1.

Authoring Adapters

The defaultSerializer property can be used to specify the
serializer that will be used by this adapter.

This is only used when a model specific serializer or
ApplicationSerializer are not defined

In an application, it is often easier to specify an
ApplicationSerializer.

If authoring a community adapter make sure to set this property
to ensure Ember does the right thing in the case a user of your
adapter does not specify an ApplicationSerializer.

A Custom Adapter

1 MyCustomAdapterAdapter = DS.RESTAdapter.extend({
2 defaultSerializer: '-default'

5 1)

Some Other Information...

Some Other Information...

e By default, your store will use DS.RESTAdapter to load and
save records.

e The RESTAdapter assumes that the URLs and JSON associated
with each model are conventional; this means:

e if you follow the rules, you will not need to configure the
adapter or write any code in order to get started.

URL Conventions

The REST adapter is smart enough to determine the URLs it
communicates with based on the name of the model. For example,
If you ask for a Post by ID:

1 store.find('post', 1).then(function (post) {
IDK

The REST adapter will automatically send a GET request to /
posts/1.

The actions you can take on a record map onto the following URLs
in the REST adapter:

Action | HTTP Verb | URL

-ind GET /people/123
-ind ALL GET /people
Update PUT /people/123
Create POST /people
Delete DELETE /people/123

Pluralization Customization

Irregular or uncountable pluralizations can be specified via
Ember.Inflector.inflector:

1 Ember.Inflector.inflector.irreqular(' formula’', 'formulae');
2 Ember.Inflector.inflector.uncountable('advice');

This will tell the REST adapter that requests for App. Formula
requests should go to /formulae/1 instead of /formulas/1.

JSON Conventions

When requesting a record, the REST adapter expects your server to
return a JSON representation of the record that conforms to the
following conventions.

JSON Root

The primary record being returned should be in a named root. For
example, if you request a record from /people/123, the response
should be nested inside a property called person:

Note: Although after destroyRecord or deleteRecord/save the
adapter expects an empty object e.g. { } to be returned from the server
after destroying a record.

If you don't have the option to change the data that the server

responds with, you can override the
DS.JSONSerializer#extractDeleteRecord method, like so:

extractDeleteRecord: function(store, type, payload) {
// payload is {delete: true} and then ember data wants to go ahead and set

1
2
3 // the new properties, return null so it doesn't try to do that
4 return null;

5

b

Attribute Names

Attribute names should be camelized. For example, if you have a
model like this:

1 App.Person = DS.Model.extend({
firstName: DS.attr('string'),
lastName: DS.attr('string'),

isPersonOfTheYear: DS.attr('boolean’)

2
3
4
5
6 });

Attribute Names, Cont'd

The JSON returned from your server should look like this:

{
"person': {
"firstName": "Barack'",
"LlastName": "Obama'",

"isPersonOfTheYear": true

NOyon p NN B

Irregular keys can be mapped with a custom serializer. If the JSON
for the Person model has a key of LastNameOfPerson, and the
desired attribute name is simply LastName, then create a custom
Serialize for the model and override the normalizeHash
property.

1 App.Person = DS.Model.extend({

2 lastName: DS.attr('string')

5 1)

4 App.PersonSerializer = DS.RESTSerializer.extend({
5 normalizeHash: {

6 LastNameOfPerson: function(hash) {

/ hash.lastName = hash.lastNameOfPerson;
8 delete hash.lastNameOfPerson;

9 return hash;

10 3

11 }

Relationships

References to other records should be done by ID. For example, if
you have a model with a hasMany relationship:

1 App.Post = DS.Model.extend({
2 comments: DS.hasMany('comment', {async: true})

5 3);

Relationships, Cont'd

The JSON should encode the relationship as an array of IDs:

1 ¢

2 "post": {

3 "comments": [1, 2, 3]
4

5

J
J

Comments for a post can be loaded by
post.get('comments'). The REST adapter will send a GET
request to /comments?ids[|=1&1ds[|=2&1ids[]=3.

Relationships, Cont'd

Any belongsTo relationships in the JSON representation should
be the camelized version of the Ember Data model's name, with the
string Id appended. For example, if you have a model:

1 App.Comment = DS.Model.extend({
2 post: DS.belongsTo('post')

5 1)

Relationships, Cont'd

The JSON should encode the relationship as an ID to another
record:

{

"comment": {
"post": 1
]
]

Ui A N N -

Relationships, Cont'd

If needed these naming conventions can be overwritten by
implementing the keyForRelationship method.

1 App.ApplicationSerializer = DS.RESTSerializer.extend({
keyForRelationship: function(key, relationship) {

2

3 return key + 'Ids';
4 3

> 1)

Sideloaded Relationships

e To reduce the number of HTTP requests necessary, you can
sideload additional records in your JSON response.

e Sideloaded records live outside the JSON root, and are
represented as an array of hashes

1{

2 "post": {

3 "id": 1,

£ "title": "Node is not omakase",

5 "comments": [1, 2, 3]

6 1,

7/

3 "comments": [{

9 "id": 1,

10 "body": "But is it _lightweight_ omakase?"

11 3,

12 {

13 "id": 2,

14 "body": "I for one welcome our new omakase overlords"
15 3,

16 {

17 "id": 3,

18 "body": "Put me on the fast track to a delicious dinner"
19 1]

20 3

Creating Custom Transformations

e In some circumstances, the built in attribute types of string,
number, boolean, and date may be inadequate.

e For example, a server may return a non-standard date format.

e Ember Data can have new JSON transforms registered for use as
attributes

O 0O NOUT DN WWNDN B

ER TN
= O

A Custom Transformation

App.CoordinatePointTransform = DS.Transform.extend({
serialize: function(value) {
return [value.get('x'), value.get('v')];
+s
deserialize: function(value) {
return Ember.create({ x: value[0@], y: value[l] });

3

IDK
App.Cursor = DS.Model.extend({

position: DS.attr('coordinatePoint')

1)

A Custom Transformation, Cont'd

When coordinatePoint is received from the API, it is expected
to be an array:

{

1
2 cursor: {

3 position: [4,9]
4

>}

A Custom Transformation, Cont'd

But once loaded on a model instance, it will behave as an object:

1 var cursor = App.Cursor.find(1l);
2 cursor.get('position.x"'); //=> 4
5 cursor.get('position.y'); //=> 9

If position is modified and saved, it will pass through the
serialize function in the transform and again be presented as
an array in JSON.

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/models/

COEN 168/268, Summer 2014

Mobile Web Application Development
Ember Data

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

