COEN 168/268

Mobile Web Application Development

Ember Naming Conventions

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/concepts/naming-conventions/

Ember Uses Naming Conventions For
Convenience

Allows you to wire up your objects without a lot of boilerplate.

You will want to use these conventional names for your routes,
controllers and templates.

Makes it easy to guess the names

In the following examples 'App' is a name that we chose to
namespace or represent our Ember application

The Application

When your application boots, Ember will look for these objects:

e App.ApplicationRoute

e App.ApplicationController

e the application template

The Application, and
App.ApplicationController

e Ember.js will render the application template as the main
template.

e If App.ApplicationController is provided, Ember.js will set
an instance of App.ApplicationController as the

controller for the template.

 This means that the template will get its properties from the
controller.

The Application, and
App.ApplicationRoute

e |f your app provides an App.ApplicationRoute, Ember.js will
iInvoke the route's hooks first, before rendering the
application template.

e Hooks are implemented as methods and provide you access
points within an Ember object's lifecycle to intercept and execute
code to modify the default behavior at these points to meet your
needs.

Here's a simple example that uses a route, controller, and template:

App.ApplicationRoute = Ember.Route.extend({

setupController: function(controller) {

// ~controller 1is the instance of ApplicationController
controller.set('title', "Hello world!'");

1

2

3

4

>)

6 });

/
8 App.ApplicationController = Ember.Controller.extend({
9 appName: 'My First Example’

0

190 });

1l <!-- application template -->
2 <hl>{{appName}}</h1>

3

4 <h2>{{title}}</h2>

Specify Controllers As classes

e Ember.js is responsible for instantiating them and providing them
to your templates.

e This makes it super-simple to test your controllers, and ensures
that your entire application shares a single instance of each
controller.

Simple Routes

Each of your routes will have a controller, and a template with the
same name as the route.

Let's start with a simple router:

1 App.Router.map(function() {
2 this.route('favorites');

5 3);

If your user navigates to /favorites, Ember.js will look for these
objects:

e App.FavoritesRoute

e App.FavoritesController

e the favorites template

Ember.js will render the favorites template into the
{{outlet}} inthe application template. It will set an instance
of the App.FavoritesControl ler as the controller for the
template. If your app provides an App. FavoritesRoute, the
framework will invoke it before rendering the template.

For a route like App . FavoritesRoute, you will probably
Implement the model hook to specify what model your controller

will present to the template:

1 App.FavoritesRoute = Ember.Route.extend({

2 model: function() {

3 // the model 1s an Array of all of the posts
£ return this.store.find('post');

>

6 });

You Do Not Need to Provide a Controller

e On the previous slide, we didn't provide a
FavoritesController.

e Because the model is an Array, Ember.js will automatically supply
an instance of Ember.ArrayControl ler, which will present

the backing Array as its model.

You can treat the ArrayController as if it was the
model itself.

This has two major benefits:

 You can replace the controller's model at any time without
having to directly notify the view of the change.

e The controller can provide additional computed properties or
view-specific state that do not belong in the model layer. This
allows a clean separation of concerns between the view, the

controller and the model.

The template can iterate over the elements of the
controller:

1

2 {{#each controller}}
3 {{title}}</L1i>
4 {{/each}}

5

Dynamic Segments

If a route uses a dynamic segment (a URL that includes a
parameter), the route's model will be based on the value of that

segment provided by the user.

Consider this router definition:

1 App.Router.map(function() {
2 this.resource('post', { path: '/posts/:post id' });

5 1)

In this case, the route's name is post, so Ember.js will look for
these objects:

e App.PostRoute

e App.PostController
e the post template

Your route handler's model hook converts the dynamic :post id

parameter into a model. The serialize hook converts a model
object back into the URL parameters for this route.

O 00O NOUT A WNDN P

The PostRoute

App.PostRoute = Ember.Route.extend({
model: function(params) {
return this.store.find('post', params.post 1id);

J

serialize: function(post) {
return { post_id: post.get('id') };
J
1)

Because this pattern is so common, it is the
default for route handlers.

e If your dynamic segment ends in id, the default model hook
will convert the first part into a model class on the application's
namespace (post becomes App . Post).

e |t will then call £ind on that class with the value of the dynamic
segment.

e The default behaviour of the serialize hook is to replace the

route's dynamic segment with the value of the model object's id
property.

Route, Controller and Template Defaults

e |f you don't specify a route handler for the post route
(App . PostRoute), Ember.js will still render the post template
with the app's instance of App.PostController.

e [f you don't specify the controller (App.PostController),
Ember will automatically make one for you based on the return
value of the route's model hook. If the model is an Array, you get
an ArrayControl ler. Otherwise, you get an
ObjectController.

e |f you don't specify a post template, Ember.js won't render

Nesting

You can nest routes under a resource.

1 App.Router.map(function() {

2 this.resource('posts', function() { // the posts route

3 this.route('favorites'); // the "posts.favorites route
4 this.resource('post'); // the "post route

S5 3);

6 });

Nesting, Continued

A resource is the beginning of a route, controller, or template
name.

Even though the post resource is nested, its route is named
App .PostRoute, its controller is named
App.PostController and its template is post.

When you nest a route inside a resource, the route name is
added to the resource name, aftera ..

The rule of thumb is to use resources for nouns, and routes for
adjectives (favorites) or verbs (edit).

The Index Route

At every level of nesting (including the top level), Ember.js
automatically provides a route for the / path named index.

For example, if you write a simple router like this:

1 App.Router.map(function() {
2 this.route('favorites');

5 1)
It is the equivalent of:

1 App.Router.map(function() {
2 this.route('index', { path: '/' });
3 this.route('favorites');

4 1)

If the user visits /, Ember.js will look for these objects:

e App.IndexRoute
e App.IndexController

e the index template

The index template will be rendered into the {{outlet?}} in the
application template. If the user navigates to /favorites,
Ember.js will replace the index template with the favorites

template.

A nested router like this:

1 App.Router.map(function() {
2 this.resource('posts', function() {
3 this.route('favorites');

LA D

> 1)

Is the equivalent of:

1 App.Router.map(function() {

this.route('index', { path: '/' });

this.resource('posts', function() {
this.route('index', { path: '/' 3});
this.route('favorites');

1)

1)

N Oy Ut NN

If the user navigates to /posts, the current route will be
posts.index. Ember.js will look for objects named:

e App.PostsIndexRoute

e App.PostsIndexController

e The posts/index template

First, the posts template will be rendered into the {{outlet}}
in the application template. Then, the posts/index template
will be rendered into the {{outlet}} in the posts template. If
the user then goes to /posts/favorites, Ember.js will replace
the {{outlet}} in posts with posts/favorites.

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/concepts/naming-conventions/

COEN 168/268

Mobile Web Application Development

Ember Naming Conventions

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

