COEN 168/268

Mobile Web Application Development
Ember.js Object Model

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

The lecture contents is mostly from the Ember Guides available
under the MIT license

Starting at: http:/emberjs.com/guides/object-model/classes-and-
instances/

Classes and Instances

Ember 'Emulates' Classes In
JavaScript

Defining a new Ember class

Use Ember.0Object.extend():

1 App.Person = Ember.0Object.extend({
2 say: function(thing) {

3 alert(thing);

4

> 1)

This defines a new App.Person class with a say() method.

Subclassing Existing Classes

Use extend() on any Ember class definitions:

Ember.View.extend({

1 App.PersonView
2 tagName: 'Lli',
3 classNameBindings: ['isAdministrator']

4 1)

When Subclassing, You Can Override Methods And Still Call Parent
Class Using super()

1 App.Person = Ember.Object.extend({
2 say: function(thing) {

3 var name = this.get('name');

4 alert(name + " says: " + thing);
5

6 });

/ App.Soldier = App.Person.extend({
8 say: function(thing) {

9 this. super(thing + ", sir!");
10 }
11 3);
12

13 var yehuda = App.Soldier.create({

14 name: "Yehuda Katz"

15 3);

16

17 yehuda.say("Yes"); // alerts "Yehuda Katz says: Yes, sir!"

Creating Instances

Use create() to create instance objects of Ember Classes:

1 var person = App.Person.create();
2 person.say(''Hello"); // alerts " says: Hello"

Passing In Default Instance Properties To A
Class Constructor

Pass an optional hash to the create() method:

App.Person = Ember.Object.extend({
helloWorld: function() {
alert("Hi, my name is " + this.get('name'));

)
1)

var tom = App.Person.create({
name: "Tom Dale"

1)

P © OO0 NOMNUVT A WWNWDN B

BRI

tom.helloWorld(); // alerts "Hi, my name is Tom Dale"

Performance Reasons

 For performance reasons, note that you cannot redefine an
instance's computed properties or methods when calling
create(), nor can you define new ones.

* You should only set simple properties when calling create(). If
you need to define or redefine methods or computed properties,
create a new subclass and instantiate that.

By convention, properties or variables that hold classes are
PascalCased, while instances are not, like App . Person

Initializing Instances

e When a new instance is created, its init method is invoked.

e This is the ideal place to do setup required on new instances:

App.Person = Ember.Object.extend({
init: function() {
var name = this.get('name');
alert(name + ", reporting for duty!");

3
)5

cONOYNUT A WWDN P

App.Person.create({
name: "Stefan Penner"

1)

SRR
O O

12 // alerts "Stefan Penner, reporting for duty!"

Note About Subclassing and Overriding
init()
e Make sure you call this. super()
e |fyou don't the parent class might not set up important things

 Will cause very strange behaviors that will be hard to debug

Use get and set when accessing properties

1 var person = App.Person.create();

2
5 var name = person.get('name');
4 person.set('nmame', "Toblas Funke");

Make sure to use these accessor methods; otherwise, computed
properties won't recalculate, observers won't fire, and templates
won't update.

Computed Properties

What are Computed Properties?

Computed properties let you declare functions as properties.
You create one by defining a computed property as a function.

Ember will automatically call this function when you ask for the
property.

You can then use it the same way you would any normal, static
property.

It's super handy for taking one or more normal properties and
transforming or manipulating their data to create a new value.

O 00O NOUT A WNDN B

b
R O

12
13
14
15
16

Computed properties in action

App.Person = Ember.0Object.extend({
// these will be supplied by create’
firstName: null,
LastName: null,
fullName: function() {
return this.get('firstName') + ' ' + this.get('lastName');
}.property('firstName', 'lastName')

1)

var ironMan = App.Person.create({
firstName: "Tony",
LastName: "Stark"

1)

ironMan.get(' 'fullName'); // "Tony Stark"”

Computed properties in action, cont'd

Notice that the ful LName function calls property. This declares
the function to be a computed property, and the arguments tell
Ember that it depends on the firstName and LastName
attributes.

Whenever you access the ful LName property, this function gets

called, and it returns the value of the function, which simply calls
firstName + LastName.

Alternate invocation

At this point, you might be wondering how you are able to call
the .property function on a function.

This is possible because Ember extends the function
prototype.

Without the prototype override, you can do this:

fullName: Ember.computed('firstName', 'lastName', function() {
return this.get('firstName') + ' ' + this.get('lastName');

)

Chaining computed properties

 You can use computed properties as values to create new
computed properties.

e |let'sadd adescription computed property to the previous

example, and use the existing ful LName property and add in
some other properties.

1 App.Person = Ember.Object.extend({

2 firstName: null,

3 LlastName: null,

2 age: null,

5 country: null,

6

7/ fullName: function() {

8 return this.get('firstName') + ' ' + this.get('lastName');
9 }.property('firstName', 'lastName'),

10

11 description: function() {

12 return this.get('fullName') + '; Age: ' + this.get('age') + '; Country: ' + this.get('country');
13 }.property('fullName', 'age', 'country')

14 });

15

16 var captainAmerica = App.Person.create({
17 firstName: 'Steve',
18 lastName: 'Rogers',

19 age:. 80,

20 country: 'USA'
21 });

22

25 captainAmerica.get('description'); // "Steve Rogers; Age: 80; Country: USA"

Dynamic updating

e Computed properties, by default, observe any changes made to
the properties they depend on and are dynamically updated
when they're called.

e |et's use computed properties to dynamically update.

1 captainAmerica.set('firstName', "William');
2
5 captainAmerica.get('description'); // "William Rogers; Age: 80; Country: USA"

So this change to firstName was observed by ful LName
computed property, which was itself observed by the
description property.

Setting any dependent property will propagate changes through
any computed properties that depend on them, all the way down
the chain of computed properties you've created.

Setting Computed Properties

* You can also define what Ember should do when setting a
computed property.

e |f you try to set a computed property, it will be invoked with the

key (property name), the value you want to set it to, and the
previous value.

1
2
3
4
5
6
7/
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

App.Person = Ember.Object.extend({
firstName: null,
lastName: null,
fullName: function(key, value, previousValue) {
// setter
if (arguments.length > 1) {
var nameParts = value.split(/\s+/);
this.set('firstName', nameParts[0]);
this.set('lastName', mnameParts[1l]);
by
// getter
return this.get('firstName') + ' ' + this.get('lastName');
}.property('firstName', 'lastName')
1)
var captainAmerica = App.Person.create();

captainAmerica.set('fullName', "William Burnside');
captainAmerica.get('firstName'); // William
captainAmerica.get('lastName'); // Burnside

Computed Properties and Aggregate
Data With @each

Computed Properties and Aggregate Data
With @each

e Often, you may have a computed property that relies on all of
the items in an array to determine its value.

e For example, you may want to count all of the todo items in a
controller to determine how many of them are completed.

An @each example

1 App.TodosController = Ember.Controller.extend({
2 todos: [

3 Ember.Object.create({ isDone: true }),

4. Ember.Object.create({ isDone: false }),

5 Ember.Object.create({ isDone: true })

6 1,

/

3 remaining: function() {

9 var todos = this.get('todos');

10 return todos.filterBy('isDone', false).get('length');
11 }.property('todos.@each.isDone')

12 3);

An @each example, cont'd

* Note here that the dependent key (todos.@each. isDone)
contains the special key @geach.

e This instructs Ember.js to update bindings and fire observers for
this computed property when one of the following four events

OCCUrs.

An @each example, cont'd

1. The 1sDone property of any of the objects in the todos array
changes.

2. An item is added to the todos array.
3. An item is removed from the todos array.

4. The todos property of the controller is changed to a different
array.

A @each example, cont'd

In the example above, the remaining countis 1:

1 App.todosController = App.TodosController.create();
2 App.todosController.get('remaining');

5 // 1

A @each example, cont'd

If we change the todo's isDone property, the remaining
property is updated automatically:

var todos = App.todosController.get('todos');
var todo = todos.objectAt(1l);
todo.set('isDone', true);

App.todosController.get('remaining’);
/] ©

cONOUT AWNDN P

todo = Ember.0Object.create({ isDone: false });
todos.pushObject(todo);

EENY
O O

App.todosController.get('remaining');
// 1

=
N

A @each example, cont'd

Note that @each only works one level deep. You cannot use nested
forms like todos.@each.owner.name or
todos.@each.owner.@each.name.

Observers

Observers

e Ember supports observing any property, including computed
properties.

e You can set up an observer on an object by using the observes
method on a function.

1 Person = Ember.0Object.extend({

2 // these will be supplied by create’
3 firstName: null,

4 lastName: null,

5

6 fullName: function() {

7/ var firstName = this.get('firstName');
3 var lastName = this.get('lastName');
9

10 return firstName + ' ' + lastName;
11 }.property(' firstName', 'lastName'),
12

13 fullNameChanged: function() {

14 // deal with the change

15 }.observes('fullName').on('init')

16 });

17

18 var person = Person.create({

19 firstName: 'Yehuda',

20 LastName: 'Katz'

21 });

22

23 person.set('firstName', 'Brohuda'); // observer will fire

Observers and asynchrony

e Observers in Ember are currently synchronous.

 This means that they will fire as soon as one of the properties
they observe changes.

e Because of this, it is easy to introduce bugs where properties are
not yet synchronized.

O NONULVT AW DN P

A Synchronization Bug

Person.reopen({
LastNameChanged: function() {
// The observer depends on lastName and so does fullName. Because observers
// are synchronous, when this function is called the value of fullName is
// not updated yet so this will Llog the old value of fullName
console. log(this.get('fullName'));
}.observes(' LastName')

)5

A Synchronization Bug, Cont'd

This synchronous behaviour can also lead to observers being fired
multiple times when observing multiple properties:

Person.reopen({
partOfNameChanged: function() {
// Because both firstName and lastName were set, this observer will fire twice.
}.observes('firstName', 'lastName')

)5

person.set(' firstName', 'John');
person.set('lastName', 'Smith');

O NOMUTL A~ WWDN BP-

Fix These Issues with Ember. run. once

Ensures that any processing you need to do only happens once, and
happens in the next run loop once all bindings are synchronized.

1 Person.reopen({

2 partOfNameChanged: function() {

3 Ember.run.once(this, 'processFullName');

4 }.observes('firstName', 'lastName'),

5

6 processFullName: function() {

7/ // This will only fire once if you set two properties at the same time, and
3 // will also happen in the next run loop once all properties are synchronized
9 console.log(this.get('fullName'));

10 }

11 3);

12

13 person.set('firstName', 'John');

14 person.set('lastName', 'Smith');

Observers and object initialization

e Observers never fire until after the initialization of an object is
complete.

e |f you need an observer to fire as part of the initialization
process, you cannot rely on the side effect of set.

e |nstead, specify that the observer should also run after init by
using .on('init'):

O 00O NOUT A WNDN P

Observers and object initialization, cont'd

App.Person = Ember.Object.extend({
init: function() {
this.set('salutation', "Mr/Ms'");

J

salutationDidChange: function() {
// some side effect of salutation changing
}.observes('salutation').on('init')

1)

Unconsumed Computed Properties Do Not
Trigger Observers

e If you never get a computed property, its observers will not fire
even If its dependent keys change.

* You can think of the value changing from one unknown value to
another.

 This doesn't usually affect application code because computed
properties are almost always observed at the same time as they

are fetched.

Unconsumed Computed Properties Do Not
Trigger Observers

e For example, you get the value of a computed property, put it in
DOM (or draw it with D3), and then observe it so you can update
the DOM once the property changes.

e |f you need to observe a computed property but aren't currently
retrieving it, just get it in your init method.

Without prototype extensions

You can define inline observers by using the Ember.observer
method if you are using Ember without prototype extensions:

1 Person.reopen({

2 ful LINameChanged: Ember.observer('fullName', function() {
3 // deal with the change

4 1)

> 1);

Qutside of class definitions

You can also add observers to an object outside of a class definition
using addObserver:

1 person.addObserver('fullName', function() {
2 // deal with the change

5 3);

Bindings

Bindings

e Creates a link between two properties such that when one
changes, the other one is updated to the new value
automatically.

e Can connect properties on the same object, or across two
different objects.

e Unlike most other frameworks that include some sort of binding
Implementation, bindings in Ember.js can be used with any
object, not just between views and models.

Creating a Two-way binding

The easiest way to create a two-way binding is to use a computed
alias, that specifies the path to another object.

wife = Ember.Object.create({
householdIncome: 80000

)5

husband = Ember.Object.create({
wife: wife,
householdIncome: Ember.computed.alias('wife.householdIncome')

1)

cONOYNULT D WWNWDN P

O

10 husband.get('householdIncome'); // 80000
11

12 // Someone gets raise.

13 husband.set('householdIncome', 90000);
14 wife.get('householdIncome'); // 90000

Bindings Do Not Update Immediately

e Ember waits until all of your application code has finished
running before synchronizing changes.

e This is so you can change a bound property as many times as
you'd like without worrying about the overhead of syncing

bindings when values are transient.

One-Way Bindings

A one-way binding only propagates changes in one direction.
Often, one-way bindings are just a performance optimization.

Sometimes one-way bindings are useful to achieve specific
behaviour such as a default that is the same as another property
but can be overriden

(e.g. a shipping address that starts the same as a billing address
but can later be changed)

O 0O NOUT D WNDN P

P PP R R R PR R
cONO U NWNRO

user = Ember.Object.create({
fullName: "Kara Gates"

1)

userView Ember.View.create({
user. user,
userName: Ember.computed.oneWay('user.fullName')

)5

// Changing the name of the user object changes
// the value on the view.

user.set('fullName', "Krang Gates");

// userView.userName will become "Krang Gates"

// ...but changes to the view don't make it back to
// the object.

userView.set('userName', "Truckasaurus Gates');
user.get('fullName'); // "Krang Gates"

Reopening Classes and Instances

Ui A N N -

Reopening Classes and Instances

You don't need to define a class all at once.

You can reopen a class and define new properties using the
reopen method.

Person.reopen({
isPerson: true

1)

Person.create().get('isPerson') // true

You can also override existing methods using
reopen

When using reopen, you can also override existing methods and
callthis. super.

1 Person.reopen({

2 // override say to add an ! at the end
3 say: function(thing) {

4 this. super(thing + "!1'");

>

6

1)

You can also add instance methods and
properties
e reopen is used to add instance methods and properties that are

shared across all instances of a class.

e |t does not add methods and properties to a particular instance
of a class as in vanilla JavaScript (without using prototype).

e But when you need to create class methods or add properties to
the class itself you can use reopenClass.

sssssssssssssssssssssssssss

Bindings, Observers, Computed
Properties: What Do | Use When?

Computed Properties

o Use computed properties to build a new property by synthesizing
other properties.

e Computed properties should not contain application behavior,
and should generally not cause any side-effects when called.

e Exceptin rare cases, multiple calls to the same computed
property should always return the same value (unless the
properties it depends on have changed, of course.)

Observers

e Observers should contain behavior that reacts to changes in
another property.

e Observers are especially useful when you need to perform some
behavior after a binding has finished synchronizing.

Bindings

e Bindings are most often used to ensure objects in two different
layers are always in sync.

e For example, you bind your views to your controller using
Handlebars.

The lecture contents is mostly from the Ember Guides available
under the MIT license

Starting at: http:/emberjs.com/guides/object-model/classes-and-
instances/

COEN 168/268

Mobile Web Application Development
Ember.js Object Model

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

