COEN 168/268, Winter 2014

Mobile Web Application Development
Ember Routing

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

The lecture contents is adapted from the Ember Guides available
under the MIT license

Starting at: http:/emberjs.com/guides/routing/

Introduction to Routing

What Are Routes?

As users interact with your application, it moves through many
different states.

In Ember.js, each of the possible states in your application is
represented by a URL.

Because app state like: Are we logged in? What post are we looking
at? —are encapsulated by route handlers for the URLs, answering
them is both simple and accurate.

Ember.js gives you helpful tools for managing that state in a way
that scales with your application.

Route Handlers

At any given time, your application has one or more active route
handlers. The active handlers can change for one of two reasons:

1. The user interacted with a view, which generated an event that
caused the URL to change.

2. The user changed the URL manually (e.g., via the back button), or
the page was loaded for the first time.

Route Handlers, Cont'd

When the current URL changes, the newly active route handlers
may do one or more of the following:

1. Conditionally redirect to a new URL.
2. Update a controller so that it represents a particular model.

3. Change the template on screen, or place a new template into an
existing outlet.

Logging Route Changes

As your application increases in complexity, it can be helpful to
see exactly what is going on with the router.

To have Ember write out transition events to the log, simply
modify your Ember.Application:

App = Ember.Application.create({
LOG TRANSITIONS: true

1)

Specifying a Root URL

If your Ember app is one of multiple web applications served
from the same domain.

You may need to indicate to the router what the root URL for
your Ember application is.

By default, Ember assumes it is served from the domain's root.

App.Router.reopen({
rootURL: '/blog/'

1)

Defining Your Routes

Defining Your Routes

e When your app starts, the router is responsible for displaying
templates, loading data, and otherwise setting up app state.

e |t does so by matching the current URL to the defined routes

1 App.Router.map(function() {

2 this.route("about", { path: "/about" });

3 this.route("favorites", { path: "/favs" });
4 1)

Now, when the user visits /about, Ember.js will render the about
template. Visiting /favs will render the favorites template.

You Don't Have Specify All Routes!

You get a few routes for free:
- The ApplicationRoute
- The IndexRoute (corresponding to the / path).

Also...

You can leave off the path if it is the same as the route name. In this
case, the following is equivalent to the above example:

1 App.Router.map(function() {
2 this.route("about");
3 this.route("favorites", { path: "/favs" });

4 });

O LT AN DN BB

Linking To Different Routes

Inside your templates, you can use {{link-to}} to navigate
between routes.

Use the name that you provided to the route method (or, in the
case of /, the name index).

{{#link-to 'index'}}{{/link-to}}

<nav>
{{#link-to 'about'}}About{{/link-to}}
{{#link-to 'favorites'}}Favorites{{/link-to}}
</nav>

Customizing The Behavior Of A Route

e Creating an Ember . Route subclass:

1 App.IndexRoute = Ember.Route.extend({

2 setupController: function(controller) {
3 // Set the IndexController's title
4 controller.set('title’', "My App");

> g

6 });

The IndexController is the starting context for the index
template.

Customizing The Behavior Of A Route, Cont'd

Now that you've set title, you can use it in the template:

1l <!-- get the title from the IndexController -->
2 <h1>{{title}}</hl>

(If you don't explicitly define an App . IndexController, Ember.js
will automatically generate one for you.)

Ember.js automatically figures out the names of the routes and
controllers based on the name you pass to this.route.

URL Route Name Controller Route Template
/ index IndexController IndexRoute index
/about about AboutController AboutRoute about

/favs favorites FavoritesController FavoritesRoute favorites

Resources

You can define groups of routes that work with a resource:

1 App.Router.map(function() {

2 this.resource('posts', { path: '/posts' 3}, function() {
3 this.route('new');

4 1)

> 1)

As with this.route, you can leave off the path if it's the same as
the name of the route, so the following router is equivalent:

1 App.Router.map(function() {
2 this.resource('posts', function() {
3 this.route('new');

4 1)

> 1)

This router creates three routes:

URL Route Name Controller Route Template
/ index IndexController IndexRoute index
N/A posts PostsController PostsRoute posts
Jre— Tt PostsController PostsRoute posts

D PostsIndexController 5 PostsIndexRoute ' posts/index

PostsController PostsRoute posts

/posts/new osts.new
g g b PostsNewController b PostsNewRoute b posts/new

Resources vs Routes

e A resource should be used for URLs that represent a noun

e A route should be used for URLs that represent adjectives or
verbs

For example, when specifying URLs for posts (a noun), the route
was defined with this.resource('posts'). However, when
defining the new action (a verb), the route was defined with
this.route('new').

Routes Are Used To Convert URLS to models

For example, if we have the resource
this.resource('posts');, our route handler might look like
this:

App.PostsRoute = Ember.Route.extend({

1
2 model: function() {

3 return this.store.find('posts');
4

)
> 1)

The posts template will then receive a list of all available posts as
its context.

Dynamic Routes Are Needed

e /posts represents a fixed model, we don't need any additional
information to know what to retrieve.

e However, if we want a route to represent a single post, we would
not want to have to hardcode every possible post into the router.

Therefore, we need dynamic segments

What is a Dynamic Segment?

A dynamic segment is a portion of a URL that starts with a : and is
followed by an identifier.

1 App.Router.map(function() {
2 this.resource('posts');

3 this.resource('post', { path: '/post/:post id' });
4 3);

5

6 App.PostRoute = Ember.Route.extend({

/ model: function(params) {

3 return this.store.find('post', params.post id);
2 3

10 3);

This pattern is so common, the model hook is
the default behavior

e |If the dynamic segmentis :post id, Ember.js is smart enough
to know that it should use the model App . Post (with the ID
provided in the URL).

e Specifically, unless you override model, the route will return
this.store.find('post', params.post 1id)
automatically.

What About If Your Model Does Not Use id?

If your model does not use the id property in the URL, you should
define a serialize method on your route:

1 App.Router.map(function() {

2 this.resource('post', {path: '/posts/:post_slug'});

3 3);

4

5 App.PostRoute = Ember.Route.extend({

6 model: function(params) {

/ // the server returns { slug: 'foo-post' }°

8 return jQuery.getJSON("/posts/" + params.post _slug);
2 1

10

11 serialize: function(model) { // default inserts models "id 1into the route
12 // this will make the URL " /posts/foo-post"

13 return { post_slug: model.get('slug') };

14 3

15 3);

Nested Resources

You cannot nest routes, but you can nest resources:

1 App.Router.map(function() {

2 this.resource('post', { path: '/post/:post_id' 3}, function() {
3 this.route('edit');

4 this.resource('comments', function() {

5 this.route('new');

6 1)

7 3);

8 });

Nested Resources, Continued

URL
/
N/A

/post/:post_id?
/post/:post_id/edit

N/A
/post/:post_id/comments

/post/:post_id/comments/new

LI oW ol o

Route Name

index

post
post.index
post.edit
comments

comments. index

comments.new

- o IS TYRNN VPNSANAAT T e e MV Y VNSANONT VAT

[h o W o N |

Controller

App.
App.
App.
App.
App.
App.

App.

IndexController
PostController
PostIndexController
PostEditController
CommentsController
CommentsIndexController

CommentsNewController

VRN VN ITAN AATIRR

Rou

App

App.
App.
App.
App.
App.

App.

[aYatl FVN~T o

te

. IndexRoute
PostRoute

PostIndexRoute

PostEditRoute

CommentsRoute

CommentsIndexRoute

CommentsNewRoute

Template

index

post
post/index
post/edit
comments
comments/index

comments/new

Creating Deeply Nested Resources

You are also able to create deeply nested resources in order to
preserve the namespace on your routes:

1 App.Router.map(function() {

2 this.resource('foo', function() {

3 this.resource('foo.bar', { path: '"/bar' }, function() {
4 this.route('baz'); // This will be foo.bar.baz

> 1)

6 });

/

1)

Creating Deeply Nested Resources, Cont'd

URL

/

/foo
/foo/bar

/foo/bar/baz

Route Name

index
foo.index
foo.bar.index

foo.bar.baz

Controller

App.IndexController
App.FooIndexController
App.FooBarIndexController

App.FooBarBazController

Route

App.IndexRoute
App.FooIndexRoute
App.FooBarIndexRoute

App.FooBarBazRoute

Template

index
foo/index
foo/bar/index

foo/bar/baz

Initial routes

A few routes are immediately available within your application:

e App.ApplicationRoute is entered when your app first boots
up. It renders the application template.

e App.IndexRoute is the default route, and will render the
index template when the user visits / (unless / has been
overridden by your own custom route).

Remember, these routes are part of every application, so you don't
need to specify them in App.Router.map.

Wildcard / globbing Routes

 You can define wildcard routes that will match multiple routes.

e This could be used if you'd like a catchall route which is useful
when the user enters an incorrect URL not managed by your app.

Wildcard / globbing Routes Example

1 App.Router.map(function() {
2 this.route('catchall’', {path: '/*wildcard'});

5 1)

Like all routes with a dynamic segment, you must provide a context
when using a {{link-to}} or transitionTo to programatically
enter this route.

Wildcard / globbing Routes Example cont'd

1 App.ApplicationRoute = Ember.Route.extend({

2 actions: {

3 error: function () {

4 this.transitionTo('catchall', "application-error'");
> J

6

7 1)

With this code, if an error bubbles up to the Application route, your
application will enter the catchall route and display /
application-error in the URL.

Generated Objects

Generated Objects

e Whenever you define a new route, Ember.js attempts to find
corresponding Route, Controller, View, and Template
classes named according to naming conventions.

e |f an implementation of any of these objects is not found,
appropriate objects will be generated in memory for you.

Generated Routes

Given you have the following route:

1 App.Router.map(function() {
2 this.resource('posts');

5 1)

e When you navigate to /posts, Ember.js looks for
App.PostsRoute.

e |fit doesn't find it, it will automatically generate an
App . PostsRoute for you.

Custom Generated Routes

You can have all your generated routes extend a custom route. If
you define App . Route, all generated routes will be instances of
that route.

Generated Controllers

If you navigate to route posts, Ember.js looks for a controller
called App.PostsController.

If you did not define it, one will be generated for you.
Ember.js can generate three types of controllers:

e Ember.ObjectController, Ember.ArrayController,
and Ember.Controller.

The Type of Generated Controller Depends On The
model Hook

e [fit returns an object (such as a single record), an
ObjectController will be generated.

e Ifitreturns an array, an ArrayController will be generated.

e |fit does not return anything, an instance of
Ember.Controller will be generated.

Custom Generated Controllers

If you want to customize generated controllers, you can define your
own:

- App.Controller

- App.ObjectController

- App.ArrayController.

Generated controllers will extend one of these three (depending on
the conditions above).

Generated Views and Templates

e A route also expects a view and a template.
e |fyou don't define a view, a view will be generated for you.
A generated template is empty.

e |fit's a resource template, the template will simply act as an
outlet so that nested routes can be seamlessly inserted.

// 1t 1s equivalent to:
{{outlet}}

Specifying A Route's Model

Templates Are Backed By Models

e How do templates know which model they should display?

 This is one of the jobs of an Ember . Route.

 You can tell a template which model it should render by defining

a route with the same name as the template, and implementing
its model hook.

For example, to provide some model data to the photos template,
we would define an App . PhotosRoute object:

1 App.PhotosRoute = Ember.Route.extend({

2 model: function() {

3 return [{

4 title: "Tomster",

5 url: "http://emberjs.com/images/about/ember-productivity-sm.png"
6 1 o

/ title: "Eiffel Tower",

3 url: "http://emberjs.com/images/about/ember-structure-sm.png"

9 11
10 }

11 3);

Asynchronously Loading Models

In the above example, the model data was returned
synchronously from the model hook.

This means that the data was available immediately and your
application did not need to wait for it to load, in this case
because we immediately returned an array of hardcoded data.

Of course, this is not always realistic.

Usually, the data will not be available synchronously, but instead
must be loaded asynchronously over the network.

Using "promises” to manage data loading

In cases where data is available asynchronously, you can just
return a promise from the model hook, and Ember will wait until

that promise is resolved before rendering the template.

The basic idea is that they are objects that represent eventual
values.

Ex: If you use JQuery's get JSON() method, it will return a
promise for the JSON that is eventually returned.

Ember uses this promise object to know when it has enough data
to continue rendering.

Here's a route that loads the most recent PRs sent to Ember.js:

1 App.PullRequestsRoute = Ember.Route.extend({

2 model: function() {

3 return Ember.$.getJSON('https://api.github.com/repos/emberjs/ember.js/pulls’');
4

> 1)

e |Looks like it's synchronous, making it easy to read and reason
about, it's actually completely asynchronous.

e Ember detects that a promise is returned from the model hook,
and wait until that promise resolves to render the
pul LRequests template

Benefits of Promises

e Because Ember supports promises, it can work with any
persistence library that uses them as part of its public API.

 You can also use many of the conveniences built in to promises
to make your code even nicer.

e For example, imagine if we wanted to modify the above example

so that the template only displayed the three most recent pull
requests.

We can rely on promise chaining to modify the data returned from
the JSON request before it gets passed to the template:

1 App.PullRequestsRoute = Ember.Route.extend({

2 model: function() {

3 var url = 'https://api.github.com/repos/emberjs/ember.js/pulls’;
4 return Ember.$.getJSON(url).then(function(data) {

5 return data.splice(9, 3);

6

/

3

1)
)
1)

Setting Up Controllers with the Model

e So what actually happens with the value you return from the
model hook?

e By default, the value returned from your model hook will be
assigned to the model property of the associated controller. For
example, if your App.PostsRoute returns an object from its
model hook, that object will be set as the model property of the
App.PostsController.

(This, under the hood, is how templates know which model to
render: they look at their associated controller's model property.)

Dynamic Models

Some routes always display the same model.

For example, the /photos route will always display the same list
of photos available in the application.

If your user leaves this route and comes back later, the model
does not change.

However, you will often have a route whose model will change
depending on user interaction.

Imagine a photo viewer app

e The /photos route will render the photos template with the
list of photos as the model, which never changes.

e But when the user clicks on a particular photo, we want to
display that model with the photo template. If the user goes
back and clicks on a different photo, we want to display the
photo template again, this time with a different model.

e |n cases like this, it's important that we include some information

in the URL about not only which template to display, but also
which model.

In Ember, define routes with dynamic segments.

A dynamic segment is a part of the URL that is filled in by the
current model's ID.

Dynamic segments always start with a colon (:).

Our photo example might have its photo route defined like this:

App.Router.map(function() {
this.resource('photo', { path: '/photos/:photo id' });
1)

Dynamic Segments for Photo Route

e The photo route has a dynamic segment :photo id.

e When the user goes to the photo route to display a particular

photo model (usually via the {{link-to}?} helper), that model's
|ID will be placed into the URL automatically.

e For example, if you transitioned to the photo route with a model

whose id property was 47/, the URL in the user's browser would
be updated to:

/photos/4/

Going Directly To A URL with a Dynamic
Segment

e Users might reload the page, or send the link to a friend, who
clicks on it.

e At that point, because we are starting the application up from
scratch, the actual JavaScript model object to display has been
lost; all we have is the ID from the URL.

e Luckily, Ember will extract any dynamic segments from the URL
for you and pass them as a hash to the model hook as the first

argument.

You Always Need to Load The id In the Route

1 App.Router.map(function() {
2 this.resource('photo', { path: '/photos/:photo id' });

5 3);
4

5 App.PhotoRoute = Ember.Route.extend({
6 model: function(params) {

/ return Ember.$.getJSON('/photos/'+params.photo _id);
8)

2 3);

In the above example, we construct a URL for the JSON
representation of that photo. Once we have the URL, we use
jQuery to return a promise for the JSON model data.

Ember Data

e Many Ember developers use a model library to make finding and
saving records easier than manually managing Ajax calls.

e |n particular, using a model library allows you to cache records
that have been loaded, significantly improving the performance
of your application.

e One popular model library built for Ember is Ember Data. We wiill
talk about it later.

Setting Up A Controller

e Changing the URL may also change which template is displayed
on screen.

e Templates, however, are usually only useful if they have some
source of information to display.

 |n Ember.js, a template retrieves information to display from a
controller.

There Are Two Types of Controllers

e Ember.ObjectController

e Displays one model object

e Ember.ArrayController

e Displays an array of model objects

How do you specify the controller?

Set its model property in the route handler's setupController
hook.

App.Router.map(function() {
this.resource('post', { path: '/posts/:post id' 3});

)5

App.PostRoute = Ember.Route.extend({
// The code below 1s the default behavior, so if this is all you
// need, you do not need to provide a setupController implementation
9 // at all.
10 setupController: function(controller, model) {
11 controller.set('model', model);
12 }

13 3);

1
2
3
4
6
7
8

What does setupController do?

e Receives the route handler's associated controller as its first
argument.

e In this case, the PostRoute's setupControl ler receives the
application's instance of App.PostController.

e As asecond argument, it receives the route handler's model.

To specify a controller other than the default, set the route's
control lerName property:

1 App.SpecialPostRoute = Ember.Route.extend({
2 controllerName: 'post'

5 1)

To configure a controller other than the controller associated with
the route handler, use the control lerFor method:

App.PostRoute = Ember.Route.extend({
setupController: function(controller, model) {
this.controllerfFor('topPost').set('model’', model);

J
1)

Rendering A Template

Rendering A Template

e One of the most important jobs of a route handler is rendering
the appropriate template to the screen.

e By default, a route handler will render the template into the
closest parent with a template.

App.Router.map(function() {
this.resource('posts');

1
2
5 3);
4
5

App.PostsRoute = Ember.Route.extend();

If you want to render a template other than the one associated with
the route handler, implement the renderTemplate hook:

1 App.PostsRoute = Ember.Route.extend({
2 renderTemplate: function() {

3 this.render('favoritePost');
4 3

> 1);

If you want to use a different controller than the route handler's
controller, pass the controller's name in the control ler option:

1 App.PostsRoute = Ember.Route.extend({
2 renderTemplate: function() {

3 this.render({ controller: 'favoritePost' });
4

> 1)

Ember allows you to name your outlets. For instance, this code
allows you to specify two outlets with distinct names:

1 <div class="toolbar">{{outlet toolbar}}</div>
2 <div class="sidebar">{{outlet sidebar}}</div>

So, iIf you want to render your posts into the sidebar outlet, use
code like this:

1 App.PostsRoute = Ember.Route.extend({
2 renderTemplate: function() {

3 this.render({ outlet: 'sidebar' });
4

> 1)

All of the options described above can be used together in
whatever combination you'd like

1 App.PostsRoute = Ember.Route.extend({

2 renderTemplate: function() {

3 var controller = this.controllerfFor('favoritePost');
4

5 // Render the "favoritePost template into

6 // the outlet "posts , and display the "favoritePost
/ // controller.

3 this.render('favoritePost', {

9 outlet: 'posts',

10 controller: controller

11 1)

12 +

12 3);

If you want to render two different templates into outlets of two
different rendered templates of a route:

1 App.PostRoute = App.Route.extend({

2 renderTemplate: function() {

3 this.render('favoritePost', { // the template to render

4 into: 'posts', // the template to render into

5 outlet: 'posts', // the name of the outlet in that template
6 controller: 'blogPost' // the controller to use for the template
/ 1)

3 this.render('comments', {

9 into: 'favoritePost',

10 outlet: 'comment',

11 controller: 'blogPost'

12 1)

13)
14 3);

Transitioning and Redirecting

Using transitionTo or transitionToRoute

Calling transitionTo from a route or transitionToRoute
from a controller will stop any transition currently in progress and
start a new one, functioning as a redirect.

transitionTo takes params and behaves like
{{link-to}} helper

If you transition into a route without dynamic segments that
route's model hook will always run.

If the new route has dynamic segments, you need to pass either
a model or an identifier for each segment.

Passing a model will skip that segment's model hook.

Passing an identifier will run the model hook and you'll be able
to access the identifier in the params

Before the model is known

If you want to redirect from one route to another, you can do the
transition in the beforeModel hook of your route handler.

App.Router.map(function() {
this.resource('posts');

1)

App.IndexRoute = Ember.Route.extend({
beforeModel: function() {
this.transitionTo('posts');

)
1)

O 0O O U1 A WNDN B

After the model is known

e |f you need some information about the current model in order
to decide about the redirection, you should either use the
afterModel or the redirect hook.

e They receive the resolved model as the first parameter and the
transition as the second one, and thus function as aliases.

e |n fact, the default implementation of afterModel just calls
redirect.

1 App.Router.map(function() {
2 this.resource('posts’');
this.resource('post', { path: '/post/:post id' });

1)

App.PostsRoute = Ember.Route.extend({
afterModel: function(posts, transition) {
if (posts.get('length') === 1) {
9 this.transitionTo('post', posts.get('firstObject'));
10 }
11 }

12 3);

0O NONUT AW

When transitioning to the PostsRoute if it turns out that there is
only one post, the current transition will be aborted in favor of
redirecting to the PostRoute with the single post object being its
model.

Based on other application state

You can conditionally transition based on some other application
state.

(see next slide)

O 0O NOVWUVT A WDN PR

10

App.Router.map(function() {
this.resource('topCharts', function() {
this.route('choose', { path: '/' });
this.route('albums');
this.route('songs');
this.route('artists');
this.route('playlists');

1)

DK

App.TopChartsChooseRoute = Ember.Route.extend({

beforeModel: function() {
var lastFilter = this.controllerFor('application').get('lastFilter');
this.transitionTo('topCharts.' + (lastFilter || 'songs'));
b
1)
// Superclass to be used by all of the filter routes below

App.FilterRoute = Ember.Route.extend({
activate: function() {
var controller = this.controllerfFor('application');
controller.set('lastFilter', this.templateName);

3
IDF

App.TopChartsSongsRoute = App.FilterRoute.extend();
App.TopChartsAlbumsRoute = App.FilterRoute.extend();
App.TopChartsArtistsRoute = App.FilterRoute.extend();
App.TopChartsPlaylistsRoute = App.FilterRoute.extend();

Sorry, that was a lot of code!

In this example, navigating to the / URL immediately transitions
into the last filter URL that the user was at.

The first time, it transitions to the /songs URL.
Your route can also choose to transition only in some cases.

If the beforeModel hook does not abort or transition to a new
route, the remaining hooks (model, afterModel,
setupController, renderTemplate) will execute as usual.

Specifying The URL Type

Specifying The URL Type

e By default the Router uses the browser's hash to load the
starting state of your application and will keep it in sync as you
move around.

o At present, this relies on a hashchange event existing in the
browser.

Default Behavior

Given the following router, entering /#/posts/new will take you
to the posts.new route.

1 App.Router.map(function() {
2 this.resource('posts', function() {
3 this.route('new');

4 1)

> 1)

If you want to use a regular URL path...

If you want /posts/new to work instead, you can tell the Router
to use the browser's history API.

Keep in mind that your server must serve the Ember app at all the
routes defined here.

App.Router.reopen({
Llocation: 'history'

1)

Session history management & - cr Global usage 75.98% + 3.44% = 79.42%

Method of manipulating the user's browser's session history in JavaScript using history.pushState, history.replaceState and the popstate event

Popular versions RIRVES[e]ats
Chrome

2

N
~

N
O

Android
Browser

ﬁ
a
R
ol
@]
X
w
—

Safari 23

w

iOS Safari 4.1

7.0-71 5.0-7.0 4.4

Opera

w
~

L Blackberry Opera Chrome for Firefox for :
Opera Mini BUIPEIERS Browser’ Mobile Android Android 'E Mobile

w
U

N -

~

O

Older iOS versions and Android 4.0.4 claim support, but implementation is too buggy to be useful. Partial support in other Safari browsers refers to other buggy

behavior.

Source: http://caniuse.com/history

But, what if you don't want URLs at all?

e Finally, if you don't want the browser's URL to interact with your
application at all, you can disable the location API entirely.

e This is useful for testing, or when you need to manage state with
your Router, but temporarily don't want it to muck with the URL

(for example when you embed your application in a larger page).

1 App.Router.reopen({
2 Location: 'none’

5 1)

Query Parameters

Query Parameters

e Query parameters are optional key-value pairs that appear to the
right of the ? in a URL.

e For example, the following URL has two query params, sort and
page, which respective values ASC and 2:

http://example.com/articles?sort=ASC&page=2

e Query params allow for additional application state to be
serialized into the URL that can't otherwise fit into the path of
the URL (i.e. everything to the left of the ?).

Specifying Query Parameters

e Query params can be declared on route-driven controllers

e e.g.to configure query params that are active within the
articles route, they must be declared on
ArticlesController.

 Note: The controller associated with a given route can be
changed by specifying the control lerName property on that
route.

A NN PR

A Query Parameter Example

Let's say we'd like to add a category query parameter that will
filter out all the articles that haven't been categorized as popular.

To do this, we specify 'category' as one of
ArticlesController's queryParams:

App.ArticlesController = Ember.ArrayController.extend({
queryParams: ['category'],
category: null

1)

A Query Parameter Example, Cont'd

e This sets up a binding between the category query param in
the URL, and the category property on
ArticlesController.

e Once the articles route has been entered, any changes to the

category query param in the URL will update the category
property on ArticlesController, and vice versa.

Now we just need to define a computed property of our category-
filtered array that articles template will render:

App.ArticlesController = Ember.ArrayController.extend({
queryParams: ['category'],
category: null,

var category = this.get('category');

1

2

3

4

5 filteredArticles: function() {

6

/ var articles = this.get('model');
8

9 if (category) {

10 return articles.filterBy('category', category);
11 } else {

12 return articles;

13 }

14 }.property('category’', 'model')
15 3);

With this code, we have established the following behaviors:

1. If the user navigates to /articles, category will be null, so
the articles won't be filtered.

2. If the user navigates to /articles?
articles[category]=recent, category will be set to
"recent", so articles will be filtered.

3. Once inside the articles route, any changes to the category
property on ArticlesControl Ler will cause the URL to
update the query param.

{{link-to}} Helper

The Link-to helper supports specifying query params by way of
the query-params subexpression helper.

1 // Explicitly set target query params
2 {{#link-to 'posts' (query-params direction="asc'")}}Sort{{/link-to}}
3

4 // Binding 1s also supported
5 {{#link-to 'posts' (query-params direction=otherDirection)}}Sort{{/link-to}}

In the previous example, direction is presumably a query
param property on PostsController.

But it could also refer to a direction property on any of the
controllers associated with the posts route hierarchy, matching
the leaf-most controller with the supplied property name.

The link-to helper takes into account query parameters when
determining its "active" state, and will set the class appropriately.

You don't have to supply all of the current, active query params
for this to be true.

transitionTo

Route#transitionTo (and
Controller#transitionToRoute) now accepts a final
argument, which is an object with the key queryParams.

1 this.transitionTo('post', object, {queryParams: {showDetails: true}});
2 this.transitionTo('posts', {queryParams: {sort: 'title'}});

3
4 // 1f you just want to transition the query parameters without changing the route

5 this.transitionTo({queryParams: {direction: 'asc'}});

You can also add query params to URL transitions:

1 this.transitionTo("/posts/1?sort=date&showDetails=true');

Opting into a full transition

If the arguments in transitionTo or Link-to only change
guery params

It is not considered a full transition

This means that hooks like model and setupController
won't fire by default

Only controller properties will be updated along with the URL

However, you can opt in to a full transition

e Some query param changes necessitate loading data from the
server

e Then itis desirable to opt into a full-on transition

e To optinto a full transition when a controller query param
property changes, you can use the optional gueryParams
configuration hash on the Route associated with that controller,

and set that query param's refreshModel config property to
True

1 App.ArticlesRoute = Ember.Route.extend({

2 queryParams: {

3 category: {

- refreshModel: true

> by

6 },

7/ model: function(params) {

3 // This gets called upon entering 'articles' route

9 // for the first time, and we opt in refiring it
10 // upon query param changes via queryParamsDidChange action
11
12 // params has format of { category: "someValueOrJustNull" 3},
13 // which we can just forward to the server.
14 return this.store.findQuery('articles', params);
15 }
16 3);
17

18 App.ArticlesController = Ember.ArrayController.extend({
19 queryParams: ['category'],
20 category: null

21 });

Update URL with replaceState instead

e By default, Ember will use pushState to update the URL in the
address bar in response to a controller query param property
change

e But if you would like to use replaceState instead (which
prevents an additional item from being added to your browser's

history)

e Specify this on the Route's queryParams config hash.

1 App.ArticlesRoute = Ember.Route.extend({
2 queryParams: {

3 category: {

Z. replace: true

> J

6 7

7 })s

Note that the name of this config property and its default value of
false is similar to the Link-to helper's, which also lets you opt
Into a replaceState transition via replace=true.

Map a controller's property to a different
qguery param key

e By default, specifying £oo as a controller query param property
will bind to a query param whose key is foo, e.g. ?foo=123.

 You can also map a controller property to a different query
param key using the following configuration syntax:

App.ArticlesController = Ember.ArrayController.extend({

queryParams: {
category: "articles_category”

Js

category: null

1)

O Ln DN DN B

Note that query params that require additional customization can
be provided along with strings in the queryParams array.

1 App.ArticlesController = Ember.ArrayController.extend({
2 queryParams: ['"page'", "filter", {
3 category: "articles category"
4 31,

5 category: null,
6 page: 1,

/ filter: "recent”
by

) ;

Default values and deserialization

In the following example, the controller query param property
page is considered to have a default value of 1.

1

2
3
4

App.ArticlesController

queryParams:
page: 1
IDK

l.pagel ,

Ember.ArrayController.extend({

This affects query param behavior in two ways:

The type of the default value is used to cast changed query param
values in the URL before setting values on the controller:

e If the user clicks the back button to change from /?page=3
to /?page=2, Ember will update the page controller property to
the properly cast number 2 rather than the string '"2", which it
knows to do because the default value (1) is a number.

e This also allows boolean default values to be correctly cast when
deserializing from URL changes.

When a controller's query param property is currently set to its
default value, this value won't be serialized into the URL.

e Ifpageis 1, the URL might look like /articles, but once
someone sets the controller's page value to 2, the URL will
become /articles?page=2.

Asynchronous Routing

This section covers some more advanced features of the router and its capability for handling complex
async logic within your app.

A Word on Promises...

e Ember's approach to handling asynchronous logic in the router
makes heavy use of the concept of Promises.

 Promises are objects that represent an eventual value.

e A promise can either fulfill (successfully resolve the value) or
reject (fail to resolve the value).

A Word on Promises...

e The way to retrieve this eventual value, or handle the cases when
the promise rejects, is via the promise's then method, which

accepts two optional callbacks, one for fulfillment and one for
rejection.

e |f the promise fulfills, the fulfillment handler gets called with the
fulfilled value as its sole argument, and if the promise rejects, the

rejection handler gets called with a reason for the rejection as its
sole argument.

var promise = fetchTheAnswer();
promise.then(fulfill, reject);

function fulfill(answer) {
console.log("The answer i1s " + answer);

b

O 00O NONUVT A WNWDN B

function reject(reason) {
console.log("Couldn't get the answer! Reason: " + reason);

=
Ay

113}

Much of the power of

promises comes from the fact that they can

be chained together to perform sequential asynchronous

operations:

1 // Note: jQuery AJAX methods return promises
2 var usernamesPromise = Ember.$.getJSON('/usernames.json');

3

4 usernamesPromise.t
5 .t
6 .t
/ T

nen(fetchPhotosOfUsers)
nen(applyInstagramFilters)

hen(uploadTrendyPhotoAlbum)

nen(displaySuccessMessage, handleErrors);

The Router Pauses for Promises

 When transitioning between routes, the router collects all of the
models (via the model hook) that will be passed to the route's
controllers at the end of the transition.

e |f the model hook (or the related beforeModel or
afterModel hooks) returns:

 normal (non-promise) objects or arrays, the transition will
complete immediately.

e apromise (or if a promise was an arg to transitionTo), the
it will pause until that promise fulfills or rejects.

If the promise fulfills:

e The transition will pick up where it left off

e begin resolving the next (child) route's model

e pausing if it too Is a promise, and so on, until all destination route
models have been resolved.

The values passed to the setupControl Ler hook for each route
will be the fulfilled values from the promises.

A basic example:

1 App.TardyRoute = Ember.Route.extend({

2 model: function() {

3 return new Ember.RSVP.Promise(function(resolve) {
£ Ember.run. later(function() {

5 resolve({ msg: "Hold Your Horses" });

6 }, 3000);

/ I DK

8 1},

>

10 setupController: function(controller, model) {
11 console.log(model.msg),; // "Hold Your Horses"
12 +

13 3);

When transitioning into TardyRoute:

e the model hook will be called

e returns a promise that won't resolve until 3 seconds later
e during which time the router will be paused in mid-transition.

Then the promise eventually fulfills, the router will continue
transitioning and eventually call TardyRoute's
setupControl ler hook with the resolved object.

This pause-on-promise behavior is extremely valuable for when you
need to guarantee that a route's data has fully loaded before
displaying a new template.

When Promises Reject During a Transition...

e the transition is aborted
* no new destination route templates are rendered
e an erroris logged to the console.

You can configure this error-handling logic via the error handler
on the route's actions hash. When a promise rejects, an error
event will be fired on that route and bubble up to
ApplicationRoute's default error handler unless it is handled by
a custom error handler along the way.

A Custom Error Handler...

1 App.GoodForNothingRoute = Ember.Route.extend({

2 model: function() {

3 return Ember.RSVP.reject("FAIL");

4 1

5

6 actions: {

7/ error: function(reason) {

8 alert(reason); // "FAIL"

9
10 // Can transition to another route here, e.qg.
11 // this.transitionTo('index');
12
13 // Uncomment the line below to bubble this error event:
14 // return true;
15 +
16 }

17 3);

Recovering from Rejection

Rejected model promises halt transitions, but because promises are
chainable, you can catch promise rejects within the model hook
itself and convert them into fulfills that won't halt the transition.

1 App.FunkyRoute = Ember.Route.extend({

2 model: function() {

3 return iHopeThisWorks().then(null, function() {

4 // Promise rejected, fulfill with some default value to

5 // use as the route's model and continue on with the transition
6 return { msg: "Recovered from rejected promise" };

/ ¥

8 7

7 1);

Use beforeModel and afterModel to perform any logic when:

e The model hook covers many use cases for pause-on-promise
transitions, but sometimes you'll need beforeModel and
afterModel.

e The most common reason for this is that if you're transitioning

into a route with a dynamic URL segment via {{link-to}?} or
transitionTo

e The model for the route you're transitioning into will have
already been specified which case the model hook won't get

called

The beforeModel hook

e Easily the more useful of the two

e Called before the router attempts to resolve the model for the
given route.

Like model, returning a promise from beforeModel will pause the
transition until it resolves, or will fire an error if it rejects.

Some beforeModel use cases

Deciding whether to redirect to another route before performing
a potentially wasteful server query in model

Ensuring that the user has an authentication token before
proceeding onward to model

Loading application code required by this route

Example beforeModel usage

1 App.SecretArticlesRoute = Ember.Route.extend({

2 beforeModel: function() {

3 if (!this.controllerfFor('auth').get('isLoggedIn')) {
4 this.transitionTo(' login');

5 S

6 3

7 3);

The afterModel hook

e Called after a route's model (which might be a promise) is

resolved, and follows the same pause-on-promise semantics as
model and beforeModel.

e |tis passed the already-resolved model and can therefore

perform any additional logic that depends on the fully resolved
value of a model.

Example afterModel usage

1 App.ArticlesRoute = Ember.Route.extend({

2 model: function() {

3 // App.Article.find() returns a promise-like object

4 // (it has a "then' method that can be used like a promise)
5 return App.Article.find();

6 },

/ afterModel: function(articles) {

3 if (articles.get('length') === 1) {

9 this.transitionTo('article.show', articles.get('firstObject'));
10 }

11 }

12 3);

Loading / Error States

Loading / Error States

Ember Router provides powerful yet overridable conventions for
customizing asynchronous transitions between routes by making
use of error and Loading substates.

Loading substates

e The Ember Router allows you to return promises from the

various beforeModel/model/afterModel hooks in the
course of a transition

e These promises pause the transition until they fulfill, at which
point the transition will resume.

O 00O NONULT A WNDN

BRI
= o

Consider the following:

App.Router.map(function() {
this.resource('foo', function() { // -> FooRoute
this.route('slowModel'); // -> FooSlowModelRoute

1)
1)

App.FooSlowModelRoute = Ember.Route.extend({
model: function() {
return somePromiseThatTakesAWhileToResolve();

h;
1)

Need Visual Feedback

If you navigate to foo/slow model, and in
FooSlowModelRoute#model, you return an AJAX query
promise that takes a long time to complete.

During this time, your Ul isn't really giving you any feedback as
to what's happening

Even worse if you are entering from a full page refresh as the Ul
will be completely blank

If you navigate from another route, you'll see the old contents
while loading

So, how can we provide some visual feedback during the
transition?

Ember provides a default implementation of the Loading process
that implements the following loading substate behavior.

1 App.Router.map(function() {

2 this.resource('foo', function() { // -> FooRoute

3 this.resource('foo.bar', function() { // -> FooBarRoute

‘- this.route('baz'); // -> FooBarBazRoute
> 1)

6 1)

73

If a route with the path foo.bar.baz returns a promise that
doesn't immediately resolve, Ember will try to find a Loading
route in the hierarchy above foo.bar.baz that it can transition
into, starting with foo.bar.baz's sibling:

1. foo.bar. loading
2. foo.loading
3. Loading

Ember will find a loading route at the above location if either a) a
Route subclass has been defined for such a route, e.g.

1. App.FooBarLoadingRoute
2. App. FooLoadingRoute
3. App.LoadingRoute

or b) a properly-named loading template has been found, e.g.
1. foo/bar/loading

2. foo/loading

3. Loading

So, to fix slow asynchronous loading

Ember will transition into the first loading sub-state/route that it
finds, if one exists.

The intermediate transition into the loading substate happens
immediately (synchronously),

The URL won't be updated

Unlike other transitions that happen while another asynchronous
transition is active, the currently active async transition won't be
aborted.

So, to fix slow asynchronous loading

o After transitioning into a loading substate, the corresponding
template for that substate, if present, will be rendered into the
main outlet of the parent route

e e.g. foo.bar.loading's template would render into
foo.bar's outlet. (This isn't particular to loading routes; all
routes behave this way by default.)

e Once the main async transition into foo.bar.baz completes,
the loading substate will be exited, its template torn down,
foo.bar.baz will be entered, and its templates rendered.

Eager vs. Lazy Async Transitions

e |Loading substates are optional

e If you provide one, you are essentially telling Ember that you
want this async transition to be "eager”

e |fyou don't provide one, it will be "lazy" and remain on the pre-
transition route until ready

This has implications on error handling, i.e. when a transition into
another route fails, a lazy transition will (by default) just remain on
the previous route, whereas an eager transition will have already
left the pre-transition route to enter a loading substate.

The Loading event

e |fyou return a promise from the various beforeModel/model/
afterModel hooks, and it doesn't immediately resolve, a
Loading event will be fired on that route and bubble upward to
ApplicationRoute.

e Ifthe Loading handler is not defined at the specific route, the
event will continue to bubble above a transition's pivot route,
providing the ApplicationRoute the opportunity to manage
It.

The Loading event

1 App.FooSlowModelRoute = Ember.Route.extend({
2 model: function() {
3 return somePromiseThatTakesAWhileToResolve();
43,

5 actions: {
6 Loading: function(transition, originRoute) {
7/ //displayLoadingSpinner();

3
9

// Return true to bubble this event to FooRoute

10 // or "ApplicationRoute .
11 return true;

12 }

13 }

14 3});

The Loading event

The Loading handler provides the ability to decide what to do
during the loading process. If the last loading handler is not defined
or returns true, Ember will perform the loading substate behavior.

1 App.ApplicationRoute = Ember.Route.extend({

2 actions: {

3 loading: function(transition, originRoute) {

4 displayLoadingSpinner();

5

6 // substate implementation when returning true
/ return true;

8 b

EE

10 });

error substates

 Ember provides an analogous approach to Loading substates in
the case of errors encountered during a transition.

1 App.Router.map(function() {

2 this.resource('articles', function() { // -> ArticlesRoute

3 this.route('overview'); // -> ArticlesOverviewRoute
4 1);

> 1)

For instance, an error thrown or rejecting promise returned from
ArticlesOverviewRoute#model (or beforeModel or
afterModel) will look for:

1. Either ArticlesErrorRoute or articles/error template
2. Either ErrorRoute or error template

If one of the above is found, the router will immediately transition
into that substate (without updating the URL). The "reason" for the
error will be passed to that error state as its modell.

If no viable error substates can be found, an error message will be
logged.

error substates with dynamic segments

1 App.Router.map(function() {

2 this.resource('foo', {path: '/foo/:id'}, function() {
3 this.route('baz');

4 1)

5> 1)

6
7/
3

App.FooRoute = Ember.Route.extend({
model: function(params) {

9 return new Ember.RSVP.Promise(function(resolve, reject) {
10 reject("Error");

11 1)

12 }

15 });

error substates with dynamic segments

e |n the URL hierarchy you would visit /foo/12 which would
result in rendering the foo template into the application

template's out let.

e |n the event of an error while attempting to load the foo route
you would also render the top-level error template into the
application template's outlet. - - This is intentionally
parallel behavior as the £oo route is never successfully entered.

In order to create a £oo scope for errors and render foo/error
into £oo's out Let you would need to split the dynamic segment:

1 App.Router.map(function() {

2 this.resource('foo', {path: '/foo'}, function() {

3 this.resource('elem', {path: ':1d'}, function() {
4 this.route('baz');

S 1)

6 1)

73

The error event

e |[f ArticlesOverviewRoute#model returns a promise that
rejects (Perhaps from a server error)

e An error event will fire on ArticlesOverviewRoute and
bubble upward.

e This error event can be handled and used to display an error
message, redirect to a login page, etc.

1 App.ArticlesOverviewRoute = Ember.Route.extend({

2 model: function(params) {

3 return new Ember.RSVP.Promise(function(resolve, reject) {
o reject("Error");

> DK

6 7,

7 actions: {

3 error: function(error, transition) {

9

10 if (error && error.status === 400) {

11 // error substate and parent routes do not handle this error
12 return this.transitionTo('modelNotFound');

13 }

14

15 // Return true to bubble this event to any parent route.
16 return true;

17 }

18 3}

19 3);

In like the Loading event, you can manage the error event at the
Application level:

1 App.ApplicationRoute = Ember.Route.extend({
2 actions: {

3 error: function(error, transition) {

4

5 // Manage your errors

6 Ember.onerror(error);

/

3 // substate implementation when returning true
9 return true;

10

11 }

12 }

13 1)

Preventing and Retrying Transitions

Preventing and Retrying Transitions

 During a route transition, the Ember Router passes a transition
object to the various hooks on the routes involved in the
transition.

 Any hook that has access to this transition object has the ability
to immediately abort the transition by calling
transition.abort(), and if the transition object is stored, it
can be re-attempted at a later time by calling
transition.retry().

Preventing Transitions viawillTransition

 When a transition is attempted, whether via {{link-to}},
transitionTo, or a URL change,awillTransition actionis
fired on the currently active routes.

e This gives each active route, starting with the leaf-most route,

the opportunity to decide whether or not the transition should
ocCcur.

e |magine your app is in a route that's displaying a complex form
for the user to fill out and the user accidentally navigates
backwards. The user might lose data.

Here's one way this situation could be
handled:

1 App.FormRoute = Ember.Route.extend({

2 actions: {

3 willTransition: function(transition) {

4 if (this.controller.get('userHasEnteredData') &&

5 lconfirm("Are you sure you want to abandon progress?")) {
6 transition.abort();

/ } else {

3 // Bubble the "willTransition action so that

9 // parent routes can decide whether or not to abort.
10 return true;
11 }
12 }
13 3

14 3);

Aborting Transitions Within model, beforeModel,
afterModel

e The model, beforeModel, and afterModel hooks get called
with a transition object.

e This makes it possible for destination routes to abort attempted
transitions.

1 App.DiscoRoute = Ember.Route.extend({

2 beforeModel: function(transition) {

3 if (new Date() < new Date("January 1, 1980")) {

4 alert("Sorry, you need a time machine to enter this route.'");
5 transition.abort();

6 by

7

8

()
o
.o LJ

Storing and Retrying a Transition

e Aborted transitions can be retried at a later time.

e A common use case for this is having an authenticated route
redirect the user to a login page, and then redirecting them back
to the authenticated route once they've logged in.

1 App.SomeAuthenticatedRoute = Ember.Route.extend({

2 beforeModel: function(transition) {

3 if (!this.controllerFor('auth').get('userIsLoggedIn')) {
4 var loginController = this.controllerFor('login');

5 LoginController.set('previousTransition', transition);
6 this.transitionTo('login');

7)

8

9 1);

10

11 App.LoginController = Ember.Controller.extend({

12 actions: {

13 Llogin: function() {

14 // Log the user in, then reattempt previous transition if it exists.
15 var previousTransition = this.get('previousTransition');
16 if (previousTransition) {

17 this.set('previousTransition', null);

18 previousTransition.retry();

19 } else {

20 // Default back to homepage

21 this.transitionToRoute('index');

22 3

23 3

24 3

25 });

The lecture contents is adapted from the Ember Guides available
under the MIT license

Starting at: http:/emberjs.com/guides/routing/

COEN 168/268, Winter 2014

Mobile Web Application Development
Ember Routing

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

