COEN 168/268

Mobile Web Application Development
Testing Ember

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/testing/

Introduction

Testing is a core part of the Ember framework and its
development cycle.

Let's assume you are writing an Ember application which will
serve as a blog.

This application would likely include models such as user and
post.

It would also include interactions such as login and create post.

Let's finally assume that you would like to have [automated tests]
in place for your application.

There are two different classifications of tests
that you will need:

Integration

and

Unit

Integration Tests

Integration tests are used to test user interaction and application

flow. With the example scenario above, some integration tests you
might write are:

e A useris able to log in via the login form.
e A user is able to create a blog post.

e Avisitor does not have access to the admin panel.

Unit Tests

Unit tests are used to test isolated chunks of functionality, or
"units" without worrying about their dependencies. Some examples
of unit tests for the scenario above might be:

e A user has a role
e A user has a username

e A user has a fullname attribute that combines its first and last
name

e A post has a title

Testing Frameworks

[QUNnit] is the default testing framework for this guide, but others
are supported through third-party adapters.

Integration Tests

What Are Integration Tests?

e |ntegration tests are generally used to test important workflows
within your application.

e They emulate user interaction and confirm expected results.

Setting Up Integration Tests

In order to integration test the Ember application, you need to
run the app within your test framework.

Set the root element of the application to an arbitrary element
you know will exist.

It is useful, as an aid to test-driven development, if the root
element is visible while the tests run.

You can potentially use #qunit-fixture, which is typically used to
contain fixture html for use in tests, but you will need to override

css to make it visible.

Setting Up Integration Tests, Cont'd

App.rootElement = '#arbitrary-element-to-contain-ember-application’;

 This hook defers the readiness of the application, so that you can
start the app when your tests are ready to run.

e |t also sets the router's location to 'none’, so that the window's
location will not be modified (preventing both accidental leaking
of state between tests and interference with your testing
framework).

Setting Up Integration Tests, Cont'd

App.setupForTesting();
This injects the test helpers into the window's scope.

App.injectTestHelpers();

Setting Up Integration Tests, Cont'd

 With QUnit, setup and teardown functions can be defined in
each test module's configuration.

e These functions are called for each test in the module. If you are

using a framework other than QUnit, use the hook that is called
before each individual test.

o After each test, reset the application: App.reset() completely
resets the state of the application.

Setting Up Integration Tests, Cont'd

1 module('"Integration Tests", {
2 teardown: function() {

3 App.reset();

4

> 1)

Test adapters for other libraries

e |f you use a library other than QUnit, your test adapter will need
to provide methods for asyncStart and asyncEnd.

e To facilitate asynchronous testing, the default test adapter for

QUnit uses methods that QUnit provides: (globals) stop() and
start().

Please note:

The ember-testing package is not included in the production
builds, only development builds of Ember include the testing
package. The package can be loaded in your dev or ga builds to
facilitate testing your application. By not including the ember-

testing package in production, your tests will not be executable in a
production environment.

Test Helpers

Web Apps Are Event Driven

e One of the major issues in testing web applications is that all
code is event-driven.

e Therefore has the potential to be asynchronous (ie output can
happen out of sequence from input).

e This has the ramification that code an be executed in any order.

An Example

Let's say a user clicks two buttons, one after another and both
load data from different servers.

They take different times to respond.
Therefore, you have account for that in your tests.

Ember provides helpers to perform: asynchronous and
synchronous tests

Asynchronous Helpers

Asynchronous helpers are "aware" of (and wait for) asynchronous
behavior within your application, making it much easier to write
deterministic tests.

Also, these helpers register themselves in the order that you call
them and will be run in a chain

Each one is only called after the previous one finishes, in a chain.

You can rest assured, therefore, that the order you call them in
will also be their execution order, and that the previous helper
has finished before the next one starts.

Asynchronous Helpers

e visit(url)

e Visits the given route and returns a promise that fulfills when
all resulting async behavior is complete.

e fillIn(selector, text)

e Fills in the selected input with the given text and returns a

promise that fulfills when all resulting async behavior is
complete.

Asynchronous Helpers, Cont'd

e keyEvent(selector, type, keyCode)

e Simulates a key event type, e.g. keypress, keydown, keyup
with the desired keyCode on element found by the selector.

e triggerkvent(selector, type, options)

e Triggers the given event, e.g. blur, dblclick on the element
Identified by the provided selector.

Asynchronous Helpers, Cont'd

e click(selector)

e Clicks an element and triggers any actions triggered by the
element's click event and returns a promise that fulfills
when all resulting async behavior is complete.

Synchronous Helpers

Synchronous helpers are performed immediately when triggered.

e find(selector, context)

 Finds an element within the app's root element and within the

context (optional). Scoping to the root element is especially
useful to avoid conflicts with the test framework's reporter,
and this is done by default if the context is not specified.

e currentPath()

e Returns the current path.

Synchronous Helpers, Cont'd

e currentRouteName()

e Returns the currently active route name.

e currentURL()

e Returns the current URL.

Wait Helpers

The andThen helper will wait for all preceding asynchronous

helpers to complete prior to progressing forward. Let's take a look
at the following example.

1 test("simple test", function(){

2 expect(1l); // Ensure that we will perform one assertion
3

4 visit("/posts/new");

5 fillIn("input.title", "My new post");

6 click("button.submit");

7/

8 // Wait for asynchronous helpers above to complete

9 andThen(function() {
10 equal(find("ul.posts Lli:last").text(), "My new post");
11 3);

1235

What Happened In This Example?

e First we tell qunit that this test should have one assertion made
by the end of the test by calling expect with an argument of 1.

e We then visit the new posts URL "/posts/new", enter the text
"My new post" into an input control with the CSS class "title",
and click on a button whose class is "submit".

e We then make a call to the andThen helper which will wait for
the preceding asynchronous test helpers to complete

What Happened In This Example?

e Note andThen has a single argument of the function that
contains the code to execute after the other test helpers have

finished.

 |n the andThen helper, we finally make our call to equal which
makes an assertion that the text found in the last |li of the ul

whose class is "posts” is equal to "My new post".

Custom Test Helpers

e Ember.Test.registerHelper and
Ember.Test.registerAsyncHelper are used to register
test helpers that will be injected when
App.injectTestHelpers is called.

What is the difference?

 The difference between Ember.Test.registerHelper and
Ember.Test.registerAsyncHelper is that the latter will

not run until any previous async helper has completed and any
subsequent async helper will wait for it to finish before running.

e The helper method will always be called with the current
Application as the first parameter. Helpers need to be registered

prior to calling App.injectTestHelpers().

Here is an example of a non-async helper:

1 Ember.Test.registerHelper('shouldHaveElementWithCount',
2 function(app, selector, n, context) {

3 var el = findWithAssert(selector, context);

4 var count = el.length;

5 equal(n, count, 'found ' + count + ' times');

6

7)5

3

9 // shouldHaveElementWithCount("ul Lli", 3);

Here is an example of an async helper:

1 Ember.Test.registerAsyncHelper('dblclick’,

2 function(app, selector, context) {

3 var $el = findWithAssert(selector, context);
£ Ember.run(function() {

5 $el.dblclick();

6
/
8

1)
J
) ;
9
10 // dblclick("#person-1")

O 00O NOUT A WNDN P

Async helpers also come in handy when you want to
group interaction into one helper. For example:

Ember.Test.registerAsyncHelper('addContact',
function(app, name, context) {
fillIn('#name', name);
click('button.create');

)
) ;

// addContact("Bob");
// addContact("Dan");

Testing User Interaction

Testing User Interaction

Almost every test has a pattern of visiting a route, interacting with

the page (using the helpers), and checking for expected changes in
the DOM.

Examples:

1 test('root lists first page of posts', function(){

2 visit('/posts');

3 andThen(function() {

4 equal(find('ul.posts Lli').length, 3, 'The first page should have 3 posts');
I DK

6 3});

The helpers that perform actions use a global promise object and
automatically chain onto that promise object if it exists. This allows
you to write your tests without worrying about async behaviour
your helper might trigger.

module('Integration: Transitions', {
teardown: function() {
App.reset();

)

test('add new post', function() {
visit('/posts/new');

9 fillIn('input.title', 'My new post');
10 click('button.submit');

11

1
2
3
4
5
6
7
8

12 andThen(function() {
13 equal(find('ul.posts Lli:last').text(), 'My new post');
14 3);

15 3);

Testing Transitions

Suppose we have an application which requires authentication.
When a visitor visits a certain URL as an unauthenticated user, we
expect them to be transitioned to a login page.

1 App.ProfileRoute = Ember.Route.extend({
beforeModel: function() {
var user = this.modelFor('application');
if (Em.isEmpty(user)) {
this.transitionTo('login');

0O N O U1 MWW N

We could use the route helpers to ensure that the user would be
redirected to the login page when the restricted URL is visited.

module(' Integration: Transitions', {
teardown: function() {
App.reset();

1
2
3
4 %
> 1)
6
7
8

test('redirect to login if not authenticated', function() {

visit('/"');
9 click('.profile');
10
11 andThen(function() {
12 equal(currentRouteName(), 'login');
13 equal(currentPath(), 'login');
14 equal(currentURL(), '/login');
15 3);

16 });

Unit Testing Basics

What Are Unit Tests?

e Unit tests are generally used to test a small piece of code and
ensure that it is doing what was intended.

e Unlike integration tests, they are narrow in scope and do not
require the Ember application to be running.

Testing Ember.0Object

e As the basic object in Ember, testing Ember.0Object sets

foundation for testing more specific parts of your Ember
application:

e Such as controllers, components, etc.

e Testing an Ember.0Object is as simple as creating an instance of

the object, setting its state, and running assertions against the
object.

e By way of example lets look at a few commmon cases.

Testing Computed Properties

Let's start by looking at an object that has a computedFoo
computed property based on a £oo property.

1 App.SomeThing Ember.0Object.extend({

foo: 'bar',
computedFoo: function(){

return 'computed ' + this.get('foo');
}.property('foo')

1)

O U1 NN

Within the test we'll create an instance, update the foo property
(which should trigger the computed property), and assert that the
logic in our computed property is working correctly.

1 module('Unit: SomeThing');

2

5 test('computedFoo correctly concats foo', function() {
var someThing = App.SomeThing.create();
someThing.set('foo', 'baz');

equal(someThing.get('computedFoo'), 'computed baz');

1)

N Oy 0 b

Testing Object Methods

Next let's look at testing logic found within an object's method. In
this case the testMethod method alters some internal state of the
object (by updating the foo property).

1 App.SomeThing = Ember.Object.extend({
foo: 'bar',
testMethod: function() {
this.set('foo', 'baz');
ks
1)

O U1 NN

To test it, we create an instance of our class SomeThing as defined
above, call the testMethod method and assert that the internal
state is correct as a result of the method call.

1 module('Unit: SomeThing');

2

3 test('calling testMethod updates foo', function() {
var someThing = App.SomeThing.create();
someThing.testMethod();
equal(someThing.get('foo'), 'baz');

1)

N oy oA

In the event the object's method returns a value you can simply
assert that the return value is calculated correctly. Suppose our
object has a calc method that returns a value based on some

internal state.

1 App.SomeThing = Ember.Object.extend({

count: 0,

calc: function() {
this.incrementProperty(' 'count');
return 'count: ' + this.get('count');

N Oyt NN

The test would call the calc method and assert it gets back the
correct value.

module('Unit: SomeThing');

test('testMethod returns incremented count', function() {
var someThing = App.SomeThing.create();
equal(someThing.calc(), 'count: 1');
equal(someThing.calc(), 'count: 2');

1)

NOY Ul AN DN B

Testing Observers

Suppose we have an object that has an observable method based
on the foo property.

App.SomeThing = Ember.Object.extend({
foo: 'bar',
other: 'no’',
doSomething: function(){
this.set('other', 'vyes');
}.observes('foo')

1)

NOuor p NN B

In order to test the doSomething method we create an instance
of SomeThing, update the observed property (fo00), and assert
that the expected effects are present.

1 module('Unit: SomeThing');

2

3 test('doSomething observer sets other prop', function() {
var someThing = App.SomeThing.create();
someThing.set('foo', 'baz');

equal(someThing.get('other'), 'vyes');

1)

N Oy o p

Unit Test Helpers

Globals vs Modules

e |n the past, it has been difficult to test portions of your Ember
application without loading the entire app as a global.

e By having your application written using modules ([CommonJS],
[AMD], etc), you are able to require just code that is to be tested
without having to pluck the pieces out of your global application.

Unit Testing Helpers

[Ember-QUnit] is the default unit testing helper suite for Ember.
Can and should be used as a template for other test helpers.

It uses your application's resolver to find and automatically
create test subjects for you using the moduleFor and test

helpers.

A test subject is simply an instance of the object that a particular
test is making assertions about.

Usually test subjects are manually created by the test writer.

Available Helpers

By including Ember-QUnit, you will have access to a number of
test helpers.

Let's go through them...

moduleFor(fullName [, description [, callbacks]])

e fullName: The full name of the unit, (ie.
controller:application, route:index, etc.)

e description: the description of the module

e callbacks: normal QUnit callbacks (setup and teardown), with
addition to needs, which allows you specify the other units the
tests will need.

moduleForComponent(name [, description [,
callbacks]])

e name: the short name of the component that you'd use in a
template, (ie. x-foo, ic-tabs, etc.)

e description: the description of the module

e callbacks: normal QUnit callbacks (setup and teardown), with
addition to needs, which allows you specify the other units the
tests will need.

moduleForModel(name [, description [,
callbacks]])

e name: the short name of the model you'd use in store operations
(ie. user, assignmentGroup, etc.)

e description: the description of the module

e callbacks: normal QUnit callbacks (setup and teardown), with
addition to needs, which allows you specify the other units the
tests will need.

test

e Same as QUnit test except it includes the subject function
which is used to create the test subject.

setResolver

e Sets the resolver which will be used to lookup objects from the
application container.

Unit Testing Setup

In order to unit test your Ember application, you need to let Ember
know it is in test mode. To do so, you must call
Ember.setupForTesting().

Ember.setupForTesting();

Unit Testing Setup

e The setupForTesting() function call makes ember turn off
its automatic run loop execution.

e This gives us an ability to control the flow of the run loop
ourselves, to a degree.

e |ts default behaviour of resolving all promises and completing all
async behaviour are suspended to give you a chance to set up
state and make assertions in a known state.

In a Module-Based App

 With a module-based application, you have access to the unit
test helpers simply by requiring the exports of the module.

e However, if you are testing a global Ember application, you are
still able to use the unit test helpers.

e Instead of importing the ember-qunit module, you need to
make the unit test helpers global with emg.globalize():

emqg.globalize();

This will make the above helpers available globally.

The Resolver

e The Ember resolver plays a huge role when unit testing your
application.

e |t provides the lookup functionality based on name, such as
route:index or model :post.

e |fyou do not have a custom resolver or are testing a global
Ember application, the resolver should be set like this:

**Make sure to replace "App" with your application's namespace in the
following line™*

setResolver(Ember.DefaultResolver.create({ namespace: App 1))

If You Have A Custom Resolver

Otherwise, you would require the custom resolver and pass it to
setResolver like this (ES6 example):

1 import Resolver from './path/to/resolver’;
2 import { setResolver } from 'ember-qunit';
5 setResolver(Resolver.create());

Testing Components

Setup

Before testing components, be sure to add testing application div
to your testing html file:

1l <!-- as of time writing, ID attribute needs to be named exactly ember-testing -->
2 <div id="ember-testing"></div>

and then you'll also need to tell Ember to use this element for
rendering the application in

App.rootElement = '#ember-testing'

Components can be tested using the moduleForComponent
helper. Here is a simple Ember component:

1 App.PrettyColorComponent = Ember.Component.extend({
2 classNames: ['pretty-color'],
3 attributeBindings: ['style'],
Z- style: function() {
5
6

return 'color: ' + this.get('name') + ';';
}.property('name’)
73D

with an accompanying Handlebars template:

Pretty Color: {{name}}

Unit testing this component can be done using the
moduleForComponent helper. This helper will find the
component by name (pretty-color) and it's template (if available).

moduleForComponent('pretty-color');

Now each of our tests has a function subject () which aliases the
create method on the component factory.

Here's how we would test to make sure rendered HTML changes
when changing the color on the component:

test('changing colors', function(){

1

2

3 // this.subject() is available because we used moduleForComponent
4 var component = this.subject();
5
6
7
8

// we wrap this with Ember.run because it is an async function
Ember.run(function(){
component.set('name', 'red');
2 1}
10
11 // first call to $() renders the component.
12 equal(this.$().attr('style'), 'color: red;');
13
14 // another async function, so we need to wrap it with Ember.run
15 Ember.run(function(){
16 component.set('name', 'green');
17 3
18
19 equal(this.$().attr('style'), 'color: green;');

20 });

Another test that we might perform on this component would be
to ensure the template is being rendered properly.

test('template is rendered with the color name', function(){

1

2

3 // this.subject() is available because we used moduleForComponent
4 var component = this.subject();
5
6
7/
3

// first call to $() renders the component.
equal($.trim(this.$().text()), 'Pretty Color:');

9 // we wrap this with Ember.run because it is an async function
10 Ember.run(function(){

11 component.set('name', 'green');

122 3);

13

14 equal($.trim(this.$().text()), 'Pretty Color: green');

15 1)

Interacting with Components in the DOM

e Ember Components are a great way to create powerful,
interactive, self-contained custom HTML elements.

e Because of this, it is important to not only test the methods on
the component itself, but also the user's interaction with the

component.

Let's look at a very simple component which does nothing more
than set it's own title when clicked:

1 App.MyFooComponent = Em.Component.extend({
title: 'Hello World',

actions:{
updateTitle: function(){
this.set('title', 'Hello Ember World');

O 0 N O U1 D NN

We would use [Integration Test Helpers] to interact with the
rendered component:

1 moduleForComponent('my-foo', 'MyFooComponent');

2

3 test('clicking link updates the title', function() {
£ var component = this.subject();

5

6 // append the component to the DOM

7/ this.append();

3

9 // assert default state

10 equal(find('h2').text(), 'Hello World');

11

12 // perform click action

13 click('button');

14

15 andThen(function() { // wait for async helpers to complete
16 equal(find('h2').text(), 'Hello Ember World');
17 1)

18 });

Components with built in layout

e Some components do not use a separate template.

e The template can be embedded into the component via the
[layout] property.

For example:

1 App.MyFooComponent = Ember.Component.extend({
2

3 // layout supercedes template when rendered
2 Layout: Ember.Handlebars.compile(

5 "<h2>I'm a little {{noun}}</h2>
" +

6 "<button {{action 'changeName'}}>Click Me</button>"
7o),

3

9 noun: 'teapot',

10

11 actions:{

12 changeName: function(){

13 this.set('noun', 'embereno');

14 }

15 }

16 });

In this example, we would still perform our test by interacting with
the DOM.

1 moduleForComponent('my-foo', 'MyFooComponent');

2

3 test('clicking link updates the title', function() {
£ var component = this.subject();

5

6 // append the component to the DOM

7/ this.append();

3

9 // assert default state

10 equal(find('h2').text(), "I'm a little teapot'");

11

12 // perform click action

13 click('button');

14

15 andThen(function() { // wait for async helpers to complete
16 equal(find('h2").text(), "I'm a little embereno");
17 1)

18 });

Programmatically interacting with components

e Another way we can test our components is to perform function

calls directly on the component instead of through DOM
interaction.

e |et's use the same code example we have above as our
component, but perform the tests programatically:

Programmatically interacting with components

moduleForComponent('my-foo', 'MyFooComponent');

test('clicking link updates the title', function() {
var component = this.subject();

1
2
3
4
5
6 // append the component to the DOM, returns DOM instance

7 var $component = this.append();

3

9 // assert default state

10 equal($component.find('h2').text(), "I'm a little teapot");
11

12 // send action programmatically

13 Em.run(function(){

14 component.send('changeName');

15 1)

16

17 equal($component.find('h2').text(), "I'm a little embereno");

18 });

sendAction validation in components

e Components often utilize sendAction, which is a way to
interact with the Ember application.

e Here's a simple component which sends the action
internalAction when a button is clicked:

1 App.MyFooComponent = Ember.Component.extend({

2 Layout:Ember.Handlebars.compile("<button {{action 'doSomething'}}></button>"),
3

4 actions:{

5 doSomething: function(){

6 this.sendAction('internalAction');

/ by

3

9

-
-/
..o LI

In our test, we will create a dummy object that
receives the action being sent by the
component.

moduleForComponent('my-foo', 'MyFooComponent');

1

2

3 test('trigger external action when button is clicked', function() {
4 // tell our test to expect 1 assertion

5 expect(1l);
6
7
8
9

// component instance
var component = this.subject();

10 // component dom instance
11 var $component = this.append();

12

13 var targetObject = {

14 externalAction: function(){

15 // we have the assertion here which will be
16 // called when the action is triggered

17 ok(true, 'external Action was called!');

18 3

19 3

20

21 // setup a fake external action to be called when
22 // button is clicked

23 component.set('internalAction', 'externalAction');
24

25 // set the targetObject to our dummy object (this
26 // 1s where sendAction will send it's action to)
27 component.set('targetObject', targetObject);

28

29 // click the button

30 click('button');

31 3);

Components Using Other Components

Sometimes components are easier to maintain when broken up into
parent and child components.

Here is a simple example:

1 App.MyAlbumComponent = Ember.Component.extend({
2 tagName: 'section',

3 lLlayout: Ember.Handlebars.compile(

2 "<section>" +

5 " <h3>{{title}}</h3>" +

6 " {{yield}}" +

/ "</section>"

g8),

9 titleBinding: ['title']

10 });

11

12 App.MyKittenComponent = Ember.Component.extend({

13 tagName: 'img',

14 attributeBindings: ['width', 'height', 'src'],

15 src: function() {

16 return 'http://placekitten.com/"' + this.get('width') + '/' + this.get('height');
17 }.property('width', 'height')

18 3);

Usage of this component might look something like this:

1 {{#my-album title="Cats"}}
2 {{my-kitten width="200" height="300"7}}
3 {{my-kitten width="100" height="100"}}
4 {{my-kitten width="50" height="50"}}
5

{{/my-album}}

Testing components like these which include
child components is very simple using the
needs callback.

moduleForComponent('my-album', 'MyAlbumComponent', {
needs: ['component:my-kitten']

)

expect(2);

// component instance

1

2

3

4

5 test('renders kittens', function() {
6

7

8

9 var component = this.subject({

10 template: Ember.Handlebars.compile(

11 "{{#my-album title="Cats"}}' +

12 ' {{my-kitten width="200" height="300"3}3}' +
13 ' {{my-kitten width="100" height="100"3}3}' +
14 ' {{my-kitten width="50" height="50"3}}"' +
15 "{{/my-album}}’

16)

17 3);

18

19 // append component to the dom

20 var $component = this.append();

21

22 // perform assertions

23 equal($component.find('h3:contains("Cats")').length, 1);
24 equal($component.find('img').length, 3);

25 });

Testing Controller Actions

Here we have a controller PostsController with some
computed properties and an action setProps.

1 App.PostsController = Ember.ArrayController.extend({
2

3 propA: 'You need to write tests',

4 propB: 'And write one for me too',

5

6 setPropB: function(str) {

7/ this.set('propB', str);

8 1

9
10 actions: {
11 setProps: function(str) {
12 this.set('propA', 'Testing is cool');
13 this.setPropB(str);
14 }
15 }

16 });

setProps sets a property on the controller and also calls a
method. To write a test for this action, we would use the
moduleFor helper to setup a test container:

1 moduleFor('controller:posts', 'Posts Controller');

Next we use this.subject() to get an instance of the
PostsController and write a test to check the action.
this.subject() is a helper method from the ember-qunit
library that returns a singleton instance of the module set up using
modulefFor.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

test('calling the action setProps updates props A and B', function() {
expect(4);

// get the controller instance
var ctrl = this.subject();

// check the properties before the action is triggered
equal(ctrl.get('propA'), 'You need to write tests');
equal(ctrl.get('propB'), 'And write one for me too');

// trigger the action on the controller by using the send method,
// passing in any params that our action may be expecting
ctrl.send('setProps', 'Testing Rocks!');

// finally we assert that our values have been updated
// by triggering our action.
equal(ctrl.get('propA'), 'Testing is cool');
equal(ctrl.get(' 'propB'), 'Testing Rocks!');

1)

Testing Controller Needs

e Sometimes controllers have dependencies on other controllers.

e This is accomplished by using [needs].

For example, here are two simple controllers. The
PostController is a dependency of the
CommentsController:

1 App.PostController = Ember.0ObjectController.extend({
2 //
1)

App.CommentsController = Ember.ArrayController.extend({
needs: 'post',
title: Ember.computed.alias('controllers.post.title'),

1)

o N O U1 A WN

This time when we setup our moduleFor we need to pass an

options object as our third argument that has the controller's
needs.

1 moduleFor('controller:comments', 'Comments Controller',6 {
2 needs: ['controller:post’]
535

Now let's write a test that sets a property on our post model in
the PostControl Ler that would be available on the
CommentsController.

1 test('modify the post', function() {

2 expect(2);

3

4 // grab an instance of "'CommentsController and "PostController’
5 var ctrl = this.subject(),

6 postCtrl = ctrl.get('controllers.post');

7

8 // wrap the test in the run loop because we are dealing with async functions
S Ember.run(function() {

10

11 // set a generic model on the post controller

12 postCtrl.set('model', Ember.Object.create({ title: 'foo' }));
13

14 // check the values before we modify the post

15 equal(ctrl.get('title'), 'foo');

16

17 // modify the title of the post

18 postCtrl.get('model').set('title', 'bar');

19

20 // assert that the controllers title has changed

21 equal(ctrl.get('title'), 'bar');

22

25 });

24 });

Testing Routes

Testing Routes

e Testing routes can be done both via integration or unit tests.

e |ntegration tests will likely provide better coverage for routes
because routes are typically used to perform transitions and load
data, both of which are tested more easily in full context rather

than isolation.

e That being said, sometimes it is important to unit test your
routes.

For example, let's say we'd like to have an alert that can be
triggered from anywhere within our application. The alert function
displayAlert should be put into the ApplicationRoute
because all actions and events bubble up to it from sub-routes,
controllers and views.

1 App.ApplicationRoute = Em.Route.extend({
2 actions: {

3 displayAlert: function(text) {

4 this. displayAlert(text);

> by

6 },

7/

8 _displayAlert: function(text) {

9 alert(text);

10 }

11 3

This is made possible by using moduleFor.

e |n this route we've separated our concerns:

e The action displayAlert contains the code that is called
when the action is received, and the private function
~displayAlert performs the work.

e While not necessarily obvious here because of the small size
of the functions, separating code into smaller chunks (or
"concerns"), allows it to be more readily isolated for testing,
which in turn allows you to catch bugs more easily.

http://en.wikipedia.org/wiki/Separation_of_concerns

Here is an example of how to unit test this
route:

1 moduleFor('route:application'’, 'Unit: route/application', {

2 setup: function() {

3 originalAlert = window.alert; // store a reference to the window.alert
4 1,

5 teardown: function() {

6 window.alert = originalAlert; // restore original functions
73

8 });

9

10 test('Alert is called on displayAlert', function() {

11 expect(1l);

12

13 // with moduleFor, the subject returns an instance of the route

14 var route = this.subject(),

15 expectedText = 'foo';

16

17 // stub window.alert to perform a qunit test

18 window.alert = function(text) {

19 equal(text, expectedText, 'expected ' + text + ' to be ' + expectedText);
20 3}

21

22 // call the _displayAlert function which triggers the qunit test above
23 route. displayAlert(expectedText);

24 });

Testing Models

Testing Models

 [Ember Data] Models can be tested using the moduleForModel
helper.

e Let's assume we have a Player model that has Level and
LevelName attributes.

e We want to call LevelUp() to increment the Level and assign
a new LevelName when the player reaches level 5.

App.Player = DS.Model.extend({
level: DS . attr('number', { defaultValue: 0 }),
LlevelName: DS.attr('string', { defaultValue: 'Noob' }),

var newLevel = this.incrementProperty('level');
if (newLevel === 5) {
this.set('levelName', 'Professional');

1

2

3

4

5 LlevelUp: function() {
6

/

3

9 J

10}
11 });

Now let's create a test which will call LevelUp on the player when
they are level 4 to assert that the LevelName changes. We will use
moduleForModel:

moduleForModel('player', 'Player Model');

1
2
3 test('levelUp', function() {

4 // this.subject aliases the createRecord method on the model
5 var player = this.subject({ level: 4 });

6

7/

3

// wrap asynchronous call in run Lloop
Ember.run(function() {

9 player. levelUp();

10 });

11

12 equal(player.get('level'), 5);

13 equal(player.get('levelName'), 'Professional');

14 3);

Testing Relationships

For relationships you probably only want to test that the
relationship declarations are setup properly.

Assume that a User can own a Profile.

1 App.Profile = DS.Model.extend({});
2

5 App.User = DS.Model.extend({
4 profile: DS.belongsTo(App.Profile)

> 1)

Then you could test that the relationship is wired up correctly with
this test.

1 moduleForModel('user', 'User Model', {

2 needs: ['model:profile’]

535

4

5 test('profile relationship', function() {

6 var relationships = Ember.get(App.User, 'relationships');
7/ deepEqual(relationships.get(App.Profile), [

3 { name: 'profile', kind: 'belongsTo' }

o 1)
10 });

Automating Tests With Runners

Automating Tests With Runners

e When it comes to running your tests there are multiple

approaches that you can take depending on what best suits your
workflow.

 Finding a low friction method of running your tests is important
because it is something that you will be doing quite often.

The Browser

e The simplest way of running your tests is just opening a page in
the browser.

e The following is how to put a test "harness" around your app
with qunit so you can run tests against it:

 First, get a copy of qunit (both the JavaScript and the css)

Next, create an HTML file that includes qunit and it's css that looks
like the following example.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <title>QUnit Example</title>

6 <link rel="stylesheet" href="qunit.css">
/ </head>

8 <body>

9 <div id="qunit"></div>

10 <div id="qunit-fixture'"></div>

11 <script src="qunit.js'"></script>

12 <script src="your ember code here.js"></script>
13 <script src="your_ test code here.js'"></script>
14 </body>

15 </html>

Finally, launch your browser of choice and open the above html file.

That's it.

You're done and your tests are running.

No need to install and configure any other tools or have any
other processes running.

After adding or updating tests and/or code just reload the page
and you're off to the races running your tests.

If that meets your needs, you are done!

Manually Refreshing the Browser Is Tedious

However, if you would like a more automated way of running
your tests, read on.

Manually opening and refreshing a browser may prove to be a bit
of a tedious workflow for you.

While you get the benefit of knowing that your code work in
every browser you launch, it's still up to you to do the launching
(and then refreshing) each time you make a change.

Getting rid of repetition is why we use computers, so this can be
a problem.

Test Runners to The Rescue!

e Luckily there are tools to help with this.

e These tools allow you to run your tests in actual browsers (yes
browsers - as in more than one at the same time) and then report
the results back to you in a consolidated view. These tools are
run from the command line and they are also capable of
automatically re-running tests when changes are made to files.

e They require a bit more setup than creating a simple html file but
they will likely save time in the long run.

We Won't Cover Them In Lecture

Gotohttp://emberjs.com/guides/testing/test-
runners/ for more info

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/testing/

COEN 168/268

Mobile Web Application Development
Testing Ember

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

