COEN 168/268

Mobile Web Application Development

Ember Views

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/views/

Ember Views

Ember Views

e Because Handlebars templates in Ember.js are so powerful, the
majority of your application's user interface will be described

using them.

e |f you are coming from other JavaScript libraries, you may be
surprised at how few views you have to create.

Views in Ember.js are typically only created for
the following reasons:

e When you need sophisticated handling of user events
e When you want to create a re-usable component

Often, both of these requirements will be present at the same time.

Event Handling

 The role of the view in an Ember.js application is to translate

primitive browser events into events that have meaning to your
application.

e For example, imagine you have a list of todo items. Next to each
todo is a button to delete that item:

* Buy milk

. Mow the lawn
 Read Nietzsche

The View Handles the Event

 The view is responsible for turning a primitive event (a click) into a
semantic event: delete this todo!

e These semantic events are first sent up to the controller

e |f no method is defined there, your application's router, will try to
handle it

Ember.Router

deleteTodo
—_—

Defining a View

You can use Ember.View to render a Handlebars template and
insert it into the DOM.

To tell the view which template to use, set its templateName
property. For example, if | had a <script> tag like this:

1 <html>

2 <head>

3 <script type="text/x-handlebars" data-template-name="say-hello">
4 Hello, {{view.name}}

5 </script>

6 </head>

/ </html>

| would set the templateName property to "say-hello".

var view = Ember.View.create({
templateName: 'say-hello',
name: "Bob"

1)

A~ N DN B

Note

e For the remainder of the guide, the templateName property will
be omitted from most examples.

 You can assume that if we show a code sample that includes an
Ember.View and a Handlebars template, the view has been
configured to display that template via the templateName
property

Adding and Removing Views

You can append views to the document by calling appendTo:
view.appendTo('#container');

As a shorthand, you can append a view to the document body by
calling append:

view.append();
To remove a view from the document, call remove:

view.remove();

Handling Events

Handling Events

Instead of having to register event listeners on elements you'd like
to respond to, simply implement the name of the event you want to
respond to as a method on your view.

For example, imagine we have a template like this:

1 {{#view App.ClickableView}}
2 This 1s a clickable area!

5 {{/view}}

Let's implement App.ClickableView such that when it is
clicked, an alert is displayed:

1 App.ClickableView = Ember.View.extend({
click: function(evt) {
alert("ClickableView was clicked!");

2
3
4 3
> 1)

What Happens?

 Events bubble up from the target view to each parent view in
succession, until the root view.

e These values are read-only.

e |f you want to manually manage views in JavaScript (instead of
creating them using the {{view}?} helper in Handlebars), see
the Ember.ContainerView documentation below.

Sending Events

To have the click event from App.ClickableView affect the

state of your application, simply send an event to the view's
controller:

1 App.ClickableView = Ember.View.extend({
2 click: function(evt) {

3 this.get('controller').send(' ' turnitUp', 11);
4

> 1)

Sending Events, Cont'd

If the controller has an action handler called turnItUp, it will be
called:

1 App.PlaybackController = Ember.ObjectController.extend({
2 actions: {

3 turnltUp: function(level){

4 //Do your thing

> J

6

7 3);

Sending Events, Cont'd

If it doesn't, the message will be passed to the current route:

App.PlaybackRoute = Ember.Route.extend({
actions: {

1
2
3 turnltUp: function(level){

4 //This won't be called if it's defined on App.PlaybackController
5

6

/

)
¥
1)

Inserting Views In Templates

Inserting Views In Templates

e So far, we've discussed writing templates for a single view.

e However, as your application grows, you will often want to
create a hierarchy of views to encapsulate different areas on the

page.

e Each view is responsible for handling events and maintaining the
properties needed to display it.

wview};

To add a child view to a parent, use the {{view}} helper, which
takes a path to a view class.

O 00O NONULT AN WNDN P

N
N RO

13
14
15

H{view}} Continued

// Define parent view
App.UserView = Ember.View.extend({
templateName: 'user',

firstName: "Albert",

LastName:

1)

"Hofmann"

// Define child view
App.InfoView = Ember.View.extend({
templateName: 'info',

posts: 25,

hobbies:
)5

"Riding bicycles”

H{view}} Continued

1 <script type="text/x-handlebars" data-template-name="user">
2 User: {{view.firstName}} {{view.lastName}}

3 {{view App.InfoView}}

4 </script>

1 <script type="text/x-handlebars'" data-template-name="info">
2 Posts: {{view.posts}}

3

4 Hobbies: {{view.hobbies}}

5 </script>

H{view}} Continued

If we were to create an instance of App.UserView and render it,
we would get a DOM representation like this:

1 User: Albert Hofmann
2 <div>

3 Posts: 25

4

5 Hobbies: Riding bicycles
6 </div>

Relative Paths

Instead of specifying an absolute path, you can also specify which
view class to use relative to the parent view.

For example, we could nest the above view hierarchy.

Relative Paths, Continued

App.UserView = Ember.View.extend({
templateName: 'user',

1
2
3
4 firstName: "Albert",
5 LastName: "Hofmann',
6
/
3
9

infoView: Ember.View.extend({
templateName: 'info',

10 posts: 25,
11 hobbies: "Riding bicycles”
12)

13 3);

Relative Paths, Continued

1 User: {{view.firstName}} {{view.lastName}}
2 {{view view.infoView}}

When nesting a view class like this, make sure to use a lowercase
letter, as Ember will interpret a property with a capital letter as a
global property.

Setting Child View Templates

If you'd like to specify the template your child views use inline in
the main template, you can use the block form of the {{view}}
helper.

We might rewrite the above example...

O 0O O U1 A WNDN B

TR
= O

Setting Child View Templates, Continued

App.UserView = Ember.View.extend({
templateName: 'user',

firstName: "Albert'",
LastName: "Hofmann"

1)

App.InfoView = Ember.View.extend({
posts: 25,
hobbies: "Riding bicycles”

1)

Setting Child View Templates, Continued

1 User: {{view.firstName}} {{view.lastName}}
2 {{#view App.InfoView}}

3 Posts: {{view.posts}}

4

5 Hobbies: {{view.hobbies}}

6 {{/view}}

When you do this, it may be helpful to think of it as assigning views
to portions of the page. This allows you to encapsulate event
handling for just that part of the page.

Adding Layouts to Views

Adding Layouts to Views

 Views can have a secondary template that wraps their main
template.

e Like templates, layouts are Handlebars templates that will be
inserted inside the view's tag.

e To tell a view which layout template to use, set its LayoutName
property.

Adding Layouts to Views, Continued

e To tell the layout template where to insert the main template,
use the Handlebars {{yield}} helper.

e The HTML contents of a view's rendered template will be
inserted where the {{yield}?} helperis.

Adding Layouts to Views, Continued

First, you define the following layout template:

1 <script type='"text/x-handlebars'" data-template-name="my Llayout">
2 <div class="content-wrapper">

5 {{yield}}

4 </div>

5 </script>

And then the following main template:

1 <script type="text/x-handlebars" data-template-name="my_ content'>
2 Hello, {{view.name}}!
5 </script>

Adding Layouts to Views, Continued

Then, define a view & tell it to wrap the template with the layout:

1 AViewWithLayout = Ember.View.extend({
2 name: 'Teddy',

3 LayoutName: 'my Llayout',

Z templateName: 'my content'

> 1)
This will result in view instances containing the following HTML

1 <div class="content-wrapper'">
2 Hello, Teddy!
3 </div>

Applying Layouts in Practice

e |Layouts are extremely useful when you have a view with a
common wrapper and behavior, but its main template might

change.

e One possible scenario is a Popup View.

You can define your popup layout template:

1 <script type='"text/x-handlebars" data-template-name="popup">
2 <div class="popup">

3 <button class="popup-dismiss'>x</button>

Z <div class="popup-content'>

> {{yield}}

6 </div>

/ </div>

8 </script>

Then define your popup view:

1 App.PopupView = Ember.View.extend({
2 LayoutName: 'popup'

5 1)

Now you can re-use your popup with different templates:

1 {{#view App.PopupView}}

2 <form>

3 <label for="name">Name:</label>
Z- <input id="name" type="text" />
5 </form>

6 {{/view}}

/

3 {{#view App.PopupView}}

9 <p> Thank you for signing up! </p>
10 {{/view}}

Customizing a View's Element

Changing the HTML Tag

A view is represented by a single DOM element on the page.

You can change what kind of element is created by changing the
tagName property.

App.MyView = Ember.View.extend({
tagName: 'span'

1)

Specifying the CSS Class Names

You can also specify which class names are applied to the view by
setting its classNames property to an array of strings:

1 App.MyView = Ember.View.extend({
2 classNames: ['my-view']

5 3);

Changing the CSS Class Names Via Bindings

e |f you want class names to be determined by the state of
properties on the view, you can use class name bindings.

e |f you bind to a Boolean property, the class name will be added
or removed depending on the value:

1 App.MyView = Ember.View.extend({
2 classNameBindings: ['isUrgent'],
3 isUrgent: true

4 1)

Boolean Class Names Are Dasherized

This would render a view like this:

<div class="ember-view is-urgent'">
g

If isUrgent is changed to false, then the is-urgent class
name will be removed.

Boolean Class Names Can Be Customized

By default, the name of the Boolean property is dasherized. You
can customize the class name applied by delimiting it with a colon:

1 App.MyView = Ember.View.extend({
2 classNameBindings: ['isUrgent:urgent'],
3 isUrgent: true

4 1)
This would render this HTML:

<div class="ember-view urgent'">

Boolean Class Names Can Be Customized Both When
True and False

Besides the custom class name for the value being true, you can
also specify a class name which is used when the value is false:

1 App.MyView = Ember.View.extend({
2 classNameBindings: ['isEnabled:enabled:disabled’],
3 isEnabled: false

4 1)

Boolean Class Names Can Be Customized Both When
True and False, Continued

This would render this HTML:

<div class="ember-view disabled">

You Can Add Class Names Only When False

You can also specify to only add a class when the property is
false by declaring classNameBindings like this:

1 App.MyView = Ember.View.extend({
2 classNameBindings: ['isEnabled: :disabled'],
3 isEnabled: false

4 1)
This would render this HTML:

<div class="ember-view disabled">

You Can Add Class Names Only When False

If the isEnabled property is set to true, no class name is added:

<div class="ember-view">

If the bound value is a string, that value will be added as a class
name without modification:

1 App.MyView = Ember.View.extend({
2 classNameBindings: ['priority’'],
3 priority: 'highestPriority'

4 1)
This would render this HTML:

1 <div class="ember-view highestPriority">

Attribute Bindings on a View

You can bind attributes to the DOM element that represents a view
by using attributeBindings:

1 App.MyView = Ember.View.extend({
2 tagName: 'a’,

3 attributeBindings: ['href'],

4 href: "http://emberjs.com"
5

1)

Attribute Bindings on a View, Cont'd

You can also bind these attributes to differently named properties:

1 App.MyView = Ember.View.extend({

2 tagName: 'a',

3 attributeBindings: ['customHref:href'],
4 customHref: "http://emberjs.com"
5

1)

Customizing a View's Element from
Handlebars

e When you append a view, it creates a new HTML element that
holds its content.

e |f your view has any child views, they will also be displayed as
child nodes of the parent's HTML element.

Changing the tag using tagName

By default, new instances of Ember.View create a <div>
element. You can override this by passing a tagName parameter:

{{view App.InfoView tagName="span'"}}

Adding an id attribute using id
You can also assign an ID attribute to the view's HTML element by
passing an 1d parameter:

{{view App.InfoView id="info-view"}}

This makes it easy to style using CSS ID selectors:

1l /*%* Give the view a red background. *¥*/
2 #info-view {
3 background-color: red;

4 ¥

Adding an class names:

You can assign class names similarly:

{{view App.InfoView class="info urgent"}}

Binding class names

You can bind class names to a property of the view by using

classBinding instead of class.
1 App.AlertView = Ember.View.extend({
2 priority: "p4",

3 isUrgent: true

4 1)

{{view App.AlertView classBinding="1isUrgent priority"}}

This yields a view wrapper that will look something like this:

<div 1id="ember420" class="ember-view is-urgent p4"></div>

Built-In Views

Built-In Views

Ember comes pre-packaged with a set of views for building a few
basic controls like text inputs, check boxes, and select lists.

They are:

Ember.Checkbox

1 <label>

2 {{view Ember.Checkbox checked=model.isDone}}
3 {{model.title}}

4 </label>

Ember.TextField

1 App.MyText = Ember.TextField.extend({

2 formBlurred: null, // passed to the view helper as formBlurred=controllerPropertyName
3 change: function(evt) {

£ this.set('formBlurred', true);

5

6

)
)5

Ember.Select

1 {{view Ember.Select viewName="select"”

2 content=people

3 optionLabelPath="content.fullName"
4 optionValuePath="content.1d"
5
6

prompt="Pick a person:"
selection=selectedPerson}}

Ember.TextArea

1 var textArea = Ember.TextArea.create({
2 valueBinding: 'TestObject.value'

5 1)

Manually Managing View Hierarchy

Ember.ContainerView

e As you probably know by now, views usually create their child
views by using the {{view?}} helper.

e However, it is sometimes useful to manually manage a view's
child views. - Ember.ContainerView is the way to do just
that.

Ember.ContainerView, Continued

As you programmatically add or remove views to a
ContainerView, those views' rendered HTML are added or
removed from the DOM to match.

var container = Ember.ContainerView.create();
container.append();

var firstView = App.FirstView.create(),
secondView = App.SecondView.create();

container.pushObject(firstView);
container.pushObject(secondView);

// When the rendering completes, the DOM will contain a 'div" for the ContainerView
// and nested inside of it, a 'div for each of firstView and secondView.

R © WO NOMUIT A WNWDN P

R

Defining the Initial Views of a Container View

There are a few ways to specify which initial child views a
ContainerView should render.

The most straight-forward way is to add them in init:

var container = Ember.ContainerView.create({
init: function() {

this. super();

this.pushObject(App.FirstView.create());

this.pushObject(App.SecondView.create());

. W

00O NONUT AN WN B
W
\—/

9 container.objectAt(0).toString(); //=> '<App.FirstView:emberlZ23>'
10 container.objectAt(1l).toString(); //=> '<App.SecondView:emberll24>'

Using the childViews property

As a shorthand, you can specify a childViews property that will
be consulted on instantiation of the ContainerView also.

O LT NN P

This example is equivalent to the one above:

var container = Ember.ContainerView.extend({
childViews: [App.FirstView, App.SecondView]

1)

container.objectAt(0).toString(); //=> '<App.FirstView:emberl23>'
container.objectAt(1).toString(); //=> '<App.SecondView:emberl24>"'

Another bit of syntactic sugar is available as an option as
well:

e Specifying string names in the childViews property that
correspond to properties on the ContainerView.

e This style is less intuitive at first but has the added bonus that
each named property will be updated to reference its
instantiated child view.

O 0O NONUT AN NN -

BRI
= O

var container = Ember.ContainerView.create({
childViews: ['firstView', 'secondView'],
firstView: App.FirstView,
secondView: App.SecondView

1)

container
container

container
container

.objectAt(9).toString(); //=> '<App.FirstView:emberl23>'
.objectAt(1l).toString(); //=> '<App.SecondView:emberl24>"

.get('firstView').toString(); //=> '<App.FirstView:emberl23>'
.get('secondView').toString(); //=> '<App.SecondView:emberl24>'

It Feels Like an Array Because it is an Array

 You may have noticed that some of these examples use
pushObject to add a child view, just like you would interact

with an Ember array.

e Ember.ContainerView gains its collection-like behavior by
mixing in Ember .MutableArray.

e That means that you can manipulate the collection of views very
expressively, using methods like pushObject, popObject,
shiftObject, unshiftObject, insertAt, removeAt, or
any other method you would use to interact with an Ember array.

The lecture contents is adapted from the Ember Guides available
under the MIT license

http:/emberjs.com/guides/views/

COEN 168/268

Mobile Web Application Development

Ember Views

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

