COEN 168/268

Mobile Web Application Development
JavaScript and jQuery

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

JavaScript!

Brings life to the web

JavaScript Is the most widely
deployed programming language

Everyone has it in their browsers (except if
you're running Lynx or something)

Some history about
JavaScript...

Created by Brendan Eich at Netscape

Was originally called Mocha, then
LiveScript

Name changed to JavaScript to jump on

the Java marketing bandwagon of the
1990s

It is not at all related to Java other than
In name

First shipped in September of 1996 in
Netscape Navigator 2.0B3

For years JavaScript languished in
the hell that is <form> validation

That's not longer the case...

JavaScript adds interactivity

Now, the basics

Imperative and structured

e (C-style syntax for the most part
e However, scoping not block level, but rather function level

e Semi-colons are not required at the end of newlines

Dynamic

Dynamically typed

e var keyword is used to declare all types

Object-based

e All objects are hashes made up of key and value pairs

Runtime evaluation is possible (but not recommend as eval() is
evil)

Functional

 Functions are first-class citizens
e Functions are objects and can have properties and methods

e Closures are easy and in wide-spread use

Prototypical Inheritance

e JavaScript is not class-based
 You can simulate class-based inheritance if you want

e Functions are methods and the this property is bound to the
object itself

Prototypical Inheritance Continued

e Functions are object constructors

e new keyword can be used to create a new instance of a
prototype that inherits properties and methods

e .prototype property on a object determines what is carried
over when new is called

 This means that if you have an object declared on the
prototype, it can be shared with all instances of the object
(it's a bit weird)

JavaScript Syntax

| assume that you all know the basic C-style
syntax so | won't go into all that

For most examples, we will be using
the Chrome's Web Inspector

We will be using console. log() alot

See:

https:/developer.mozilla.org/en-US/docs/
Web/JavaScript/Guide

for more JS language examples like the next
several slides

JavaScript Values

JavaScript recognizes the five following types of primitive values:
e Numbers like 42, 3.14159

e Logical (Boolean) like true / false

e Strings like "Howdy"

 null - a special keyword denoting a null value

 undefined - a top-level property whose value is undefined

Data type conversion

JS is dynamically typed so variables can be reused

var answer 42 ;

// then later:

answer = "Thanks for all the fish...'";
X = "The answer i1is " + 42 // "The answer 1s 42"
vy = 42 + " is the answer" // "42 is the answer"

// but the + operator can cause strange things to happen:
"3/" -7 // 30
ll37ll + 7 // ll377ll

JavaScript Variables

var thislIsAString "My voice is my passport.’”;

var thisIsANumber = 2;
var thisIsABoolean = false;
var thisIsAnObject = {

keyl: "valuel",
key2: "valuel"

3

var thislsAnArray = [1, 2, 3];

Variable identifier naming conventions

Must start with letters (a-zA-Z), $, or
Subsequent characters can also be digits
Should be camelCase

Case sensitive!

var
var
var
var
var

All of these are valid, but pretty bad

b,

$parameter;

- $myValue;

this i1s a long variable name;

Variables can declared all on one line

(preferred)
var 1sVisible = false;
var 1dString = 'abc';
instead:
var 1sVisible = false,
idString = 'abc';

Also note that the alignment of the variable names and
assignments.

Variable scope
e When you declare a variable outside of a function, it will be
global

 This means that you can see it anywhere so be careful
e |fitis declared inside of a function, it is in function scope

if (true) {
var X = 5;

3

console.log(x); // 5 since there isn't block Llevel scope

undefined and null

var 1sVisible;
console.log(isVisible); // undefined

var 1dString = null;
console.log(idString); // null

if (!1sVisible) {
// Will go in here
ks

if (!1dString) {
// Will go in here
)

Converting strings to numbers

e Use parseInt() and parseFloat()

 |mportant to avoid strange behavior when:

ll1.1ll + ll1.1ll
// results in: "1.11.1"

parseFloat("1.1",10) + parseFloat("1.1", 10)
// results 1in 2.2

A Note about using == and ! =

e Using == and ! = do work, but can yield strange results

e This is due to JavaScript's type coercion that gets around
checking type

1if("0" == 0) {
// You go 1in here

J

If you care about type...

e Use === and | == to disable type coercion and enforce the type
as well
if("0" === 0) {

// You do not enter here

J

Strings

e Strings can be concatenated using +
e Can concatenate any type together with strings

e However, the results can get weird when mixing numbers and
strings

Let's take a look...

var numBlue 2,
numGreen = 5;

var colorString = "There are " + numBlue + numGreen + " objects.";
// Results in: "There are a total of 25 objects.”

var colorString = "There are " + (numBlue + numGreen) + " objects.";
// Results in: "There are a total of /7 objects.”

JavaScript Objects

Creating an Object is easy.

Let's create a mustang object

{};

It has no properties and it is empty. However, there are
prototype properties attached to itinthe proto property.

var mustang

Object prototype properties and methods

> var car = {}
undefined
> car
Object {}
> car.__defineGetter__
__defineGetter__

__defineSetter__
__lookupGetter__
__lookupSetter__
constructor
hasOwnProperty
isPrototypeOf
propertylIsEnumerable
toLocaleString
toString

valueOf

For example, here are some methods

mustang.toString();
"[Object object]”

mustang.constructor()
Object {}

mustang.constructor
function Object() { [native code] }

Creating properties on objects

e Three ways:
e dot notation
e square brackets

e |iteral notation

Dot notation

var mustang {};
mustang.make = "Ford";
mustang.model "Mustang" ;
mustang.year = 2015;

Square brackets

var mustang = {};

mustang["make"] = "Ford",;
mustang["'model"”] = "Mustang",;
mustang["year"] = 2015;

Literal Notation

var mustang = {
make: "Ford",
model: "Mustang',
year: 2015

¥

Myself, | prefer this way for complex objects.

You can also do a combination, if you need to.

// Define base properties
var mustang = {

make: "Ford",

model: "Mustang',

year: 2015

¥

// Define an additional property
mustang.color = "Red";

You can also add methods on objects:

// Define base properties
var mustang = {

make: "Ford'",

model: "Mustang'",

year: 2015,

description: function() {
return this.year + " " + this.make + " " + this.model;

’
35

> mustang.description();
"2015 Ford Mustang"

Custom objects

e The previous example was just adding properties to a base
Object

e However, most of the time, you will want to create custom
Objects to represent your data

e This will help you scale up the complexity of your app

This won't scale well...

var mustang = {
make: "Ford",
model: "Mustang',
year: 2015,

description: function() {
return this.year + " " + this.make + " " + this.model,;

)
35

var camaro = {
make: "Chevrolet",
model: "Camaro'",
year: 2015,

description: function() {
return this.year + " " + this.make + " " + this.model;

)
35

Instead, create a car Object as the base

var car = {

description: function() {
return this.year + " " + this.make + " " + this.model;

J

Then use the Object.create() method

var mustang Object.create(car);
mustang.make = "Ford";
mustang.model = "Mustang';
mustang.year = 2015;

var camaro Object.create(car);
camaro.make = "Chevrolet";
camaro.model = "Camaro";
camaro.year 2015;

Why not just pass in the properties as values?

// Doesn't work

var mustang = Object.create(car, {
make: "Ford",
model: "Mustang",
year: 2015

1)

// Works
var mustang = Object.create(car, {
make: {
value: "Ford"
I
model: {
value: "Mustang"
I
year: {
value: 2015

)
1)

A side effect of JavaScripts prototypical nature

e If you define other objects on the prototype of an Object,
any created instances will have that object referenced

 This means, that if you modify that object in one instance, it will
be modified in all instances

e To fix this, create objects on initialization, not when the object is
defined initially

e Primitives are OK

The side effect in action

var car = {

colors: ['red', 'blue', 'yellow', 'green'],
name: 'default car'

¥

var ford = Object.create(car);

var bmw = Object.create(car);

ford.colors.push('black');

> ford.colors
"['red', 'blue', 'yellow', 'green', 'black']"

> bmw.colors
" 'red', 'blue', 'yellow', 'green', 'black']"

One way to fix this...

var car = {
name: 'default car',
init: function() {
this.colors = ['red', 'blue', 'yellow', 'green'];
return this;

by
35
var ford = Object.create(car).init();
var bmw = Object.create(car).init();

ford.colors.push('black');

> ford.colors
"['red', 'bDlue', 'yellow', 'green', 'black']"

> bmw.colors
"['red', 'blue', 'yellow', 'green']"

Demo

1 - JavaScript Variables

Code can be found at:

http:/coen268.peterbergstrom.com/resources/demos/jslecturedemos.zip

JavaScript function declaration

e The name of the function.

e Alist of arguments to the function, enclosed in parentheses
and separated by commas.

e The JavaScript statements that define the function, enclosed in
curly brackets, { }.

function name(param, ...) {
// Do stuff in here.

J

JavaScript functions can return values

function whoami() {
return "Peter'";

]

e Primitive parameters (such as a number) are passed to/from
functions by value

 Non-primitive parameters (such as a object) are passed to/from
functions by reference

Ways to declare functions

There are several ways to declare functions
e constructor
e declaration

¢ anonymous expression

JavaScript function constructor

var add = new Function('"x", "y", "return x + vy;");

JavaScript function declaration

function add(x, y) {
return x + vy,

]

JavaScript anonymous function expression

var add = function(x, v) {
return x + vy,

¥

Nesting JavaScript functions

e One interesting thing about JavaScript is that you can nest
functions

e This does enforce some encapsulation

e This is usually called a closure

What is a closure?

A closure is an expression (typically a function) that can have free
variables together with an environment that binds those variables
(that "closes" the expression).

function addSquares(a,b) {
function square(x) {
return x * X;

J

return square(a) + square(b);

addSquares(2,3); // returns 153
addSquares(3,4); // returns 25
addSquares(4,5); // returns 41

Nn o o9 W\
Il

function outside(x) {
function 1inside(y) {
return x + vy,

J

return inside;

J

// Think of it like: give me a function
// that adds 3 to whatever you give it
fn inside = outside(3);

result = fn inside(5); // returns 8

resultl outside(3)(5); // returns &

Nesting can actually continue forever...

function A(x) {
function B(y) {
function C(z) {
alert(x + vy + z);

)
C(3);
)
B(2);

J
A(l); // alerts 6 (1 + 2 + 3)

Demo

2 - JavaScript Functions

Code can be found at:

http:/coen268.peterbergstrom.com/resources/demos/jslecturedemos.zip

Okay, that was a bit boring, let's
bring things to life

Working with HTML and the DOM

When a HTML document is loaded, the browser creates a
Document Object Model representation of the page

JavaScript's primary function is to interact with the HTML on the
page

It is a tree structure that you can navigate and modify in
JavaScript

In the context of DOM manipulation, HTML tags are called
DOM elements

Document

Foot element:
<htrml=

Elerment: Elerment:

<zhead:= =body=

Element: Attrnibute: Element: Element:

<title: “href” Lax <hlz

Text: Text: Text:

“My fitle” My link” “My header”

From: http:/www.w3schools.com/js/js_htmldom.asp

What can you do with the DOM with
JavaScript?

Change all the HTML elements and attributes in the page
Add or remove existing HTML elements and attributes
Change all the CSS styles in the page

React to or create HTML events in the page

Finding DOM elements

document.getElementByld('my-1d');
document.getElementsByTagName('h2"');

document.getElementsByClassName('my-classname’);

Changing DOM elements

element.className = 'my-class';
element.id = 'my-1id’';
element.style.fontSize = '10px';

and more...

Adding and Removing DOM elements

document.createkElement()
document.removeChild()
document.appendChild()
document.replaceChild()

Demo
3 - DOM traversal

Code can be found at:

http:/coen268.peterbergstrom.com/resources/demos/jslecturedemos.zip

DOM events, bringing a page to life

e There are many mouse and touch events such as click,
scroll, mousedown, ontouchstart, etc

e These are the ones that bring your app to life
e There are so many, so look them up
e There are events such as Load that trigger when things load

e Acommon oneis window.onload to do things once the
page is loaded

Several ways to add events

Inline in element

<div class="my-class" onclick="function() {alert(this.className;)}">
This is my div
</div>

Hard to manage!

In JavaScript...

<div class="my-class">This is my div</div>

// assuming only 1 div
var myDiv = document.getElementsByTagName('div')[0];

myDiv.onclick = function() {
alert(this.className);

+s

Better, but there is one problem. You overwrite any other click
handler

In JavaScript, using addEventListener():

<div class="my-class">This is my div</div>

// assuming only 1 div
var myDiv = document.getElementsByTagName('div')[0];

myDiv.addEventListener('click', function() {
alert(this.className);

1)

Now you can have multiple handlers going to the same event, if
you want

JavaScript Event Capturing & Bubbling

e Events do not happen on their own as they are part of a
hierarchy of elements

e Asyou know, HTML documents are all about nesting elements
within each other

e |et's go through an example...

Let's use this HTML

<div id="div-one'">
<div i1d="div-two'">
<div 1d="div-three">
<button id="button">[click me]</button>
</div>
</div>
</div>

<html>

<body>

<div id="div-one">

<button>
Iclick me]
</button>

Two Phases: Capturing and Bubbling

e Capturing goes down from the root, the <html> element down
to the element that triggered the event

 Then, the event bubbles up from the element that triggered the
event back up to the root

<html>

<body>

<div id="div-one">

<button>
Iclick me]
</button>

<html>

<body>

<div id="div-one">

Capturing

<button>
Iclick me]
</button>

<html>

<body>

<div iId="div-one”>

Capturing Bubbling
<pbutton>
[click me]
</button>

When to trigger the event, capturing or
bubbling?

When calling addEventListener(), you can specify if you want
to trigger on capture or on bubbling

// triggers on capture
addEventListener('click', myFunction, true);

// triggers on bubble
addEventListener('click', myFunction, false);

// default, triggers on capture
addEventListener('click', myFunction);

Why does it matter?

Usually it doesn't

However, there can be times when you want to alter behavior

If you trigger on capture, instead of bubble, you can deal with the

order of
events in one way, and vice versa

Stopping event propagation

e There are times when you want to stop the capturing or bubbling
traversal

e |f each nested <div> had a click handler, it would trigger all of
them in order unless you call e. stopPropagation() at some
point:

divOne.addEventListener('click', // divOne points to id="div-one"

function myFunction(e) {
e.stopPropagation(); // stop 1t cold and do your thing.

1)

<html>

<body>

<div id="div-one">

Capturing

<button>
Iclick me]
</button>

Stopping event default actions

Another call that you can use is e.preventDefault()

HTML elements have default actions like, clicking an <input>
element will focus on it.

With e.preventDefault() you can turn off those things and
control it completely

This is used quite often when you get into writing custom
controls

CalculatorDemo

Adding JavaScript interactivity

Code can be found at:

https:/github.com/pbergstr/calculator-demo/tree/v8-add-javascript

https:/github.com/pbergstr/calculator-demo/tree/v9-organize-javascript

JQuery is DOM manipulation framework

Takes care of browser incompatibilities
Makes it easier to look up DOM elements
Makes it easier to add and respond to events

Contains a lot of nice utility methods

How jQuery works

<l!doctype html>

<html>

<head>
<meta charset="utf-8" />
<title>Demo</title>

</head>

<body>
jQuery
<script src="jquery.]js''></script>
<script>

// Your code goes here.
</script>

</body>
</html>

Launching code on Document Ready

// Many developers do this:
window.onload = function() {
alert("welcome");

]

// But blocks on image loads so this 1s better:
$(document).ready(function() {
// Your code here.

1)

Adding Events on Document Ready

Since the DOM is loaded, but images might not be, you can add
events:

$(document).ready(function() {
$("a").click(function(event) {

alert("Thanks for visiting!");

1)
1)

A complete example

<l!doctype html>

<html>

<head>
<meta charset="utf-8" />
<title>Demo</title>

</head>

<body>
jQuery
<script src="jquery.js'"></script>
<script>

$(document).ready(function() {
$("a").click(function(event) {
alert("The link will no longer take you to jquery.com'");
event.preventDefault();

)
3)s

</script>
</body>
</html>

With jQuery it is easy to add and remove class
names

<style>
a.test {
font-weight: bold;

J
</style>

$("a").addClass("test"); // Now bold

$("a").removeClass("test"); // Not bold

JQuery makes it easy to show and hide
elements

$("a").hide(); // Now it is set to display: none

$("a").show(); // Now it is no longer display: none

You can even animate it

$("a").click(function(event) {

event.preventDefault();
$(this).hide("slow");

1)

CalculatorDemo

Converting to JQuery real quick

Code can be found at:

https:/github.com/pbergstr/calculator-demo/tree/v10-add-jquery

Demo

4 - JQuery Events

Code can be found at:

http:/coen268.peterbergstrom.com/resources/demos/jslecturedemos.zip

HTML 5 and JavaScript

e HTML5 has a lot of features that use JavaScript

e |ocal Storage, Location, Accelerometer, and more...

Local Storage

Very simple to use

Supported in modern browsers
Typically 5MB per site

Key value store

Stores only strings natively

Local Storage example

var data = {
firstName: "Peter",
LastName: "Bergstrom"

]

// Convert to JSON so we can store 1it
LlocalStorage.setltem('name', JSON.stringify(data));

var data = JSON.parse(localStorage.getltem('name'));

Location

e Based on browser permission, you can get lat and long
e Works for mobile devices and desktops

e Great for apps

Location example

function getLocation() {
if (navigator.geolocation) {
var options = {
enableHighAccuracy: true,
timeout: 5000,
maximumAge: ©
s
navigator.geolocation.getCurrentPosition(showLocation, showError, options);
} else {
showError();

)
35

Demo

5 - Local Storage and Location

Code can be found at:

http:/coen268.peterbergstrom.com/resources/demos/jslecturedemos.zip

Accelerometer

e Captures the motion of the device in physical space
e Enables a lot of interactivity
e Can be used in games or apps

Demo: http:/www.html5rocks.com/en/tutorials/device/
orientation/devicemotionsample.html

COEN 168/268

Mobile Web Application Development
JavaScript and jQuery

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

