COEN 168/268

Mobile Web Application Development

JavaScript Designh Patterns

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

Many of you probably are familiar with design
patterns already

Some of your might have read Design Patterns: Elements of Reusable
Object-Oriented Software by the 'Gang of Four'

While this class is particularly about mobile
web applications...

The design patterns used in other languages still apply

This Lecture Only Covers the Basics

You can spend the whole course on design patterns and this
lecture barely scratches the surface

This lecture covers patterns that | think you should know

The goal is to give you some inspiration on which patterns to
explore to make your app better

For more details look at Learning JavaScript Design Patterns by
Addy Osmani

As most of you know...

one of the most important things about writing maintainable code
Is to take advantage of common patterns

What Is A Design Pattern?

A reusable solution to a commonly occurring problem
Can be view as templates
Provides proven a solution

Should be be easy to reuse

Why Use Design Patterns?

By using a design pattern you can prevent minor problems cause
major architectural issues

Design patterns can provide general solutions that are well
documented

Certain design patterns can reduce the code that you write by
avoiding repetition

Certain design patterns should be in all developers vocabulary
and therefore everyone knows what is going on

Design Patterns Are The Same Across
Languages

e A design pattern applied to JavaScript should work in Java, C,
Objective-C, Swift, Python, and etc

e Design patterns are timeless. A design pattern from 30 years ago
Is probably still applicable today

e This is because they are patterns that are meant to solve

problems are common across many different types of
applications

Before Talking About JS Design Patterns, Let's
Talk About Anti-Patterns

Polluting the global namespace buy defining global variables

Passing strings rather than functions to setTimeout or
setInterval that use the eval () method internally.

Modifying the Object prototype instead of your own object

Using document .write instead of using native DOM
manipulation methods

Categories of Design Patterns

e Creational Design Patterns

e Such as Constructor, Module, Factory, Abstract,
Prototype, Singleton, Builder, and more...

e Structural Design Patterns

e Such as Decorator, Facade, Flyweight, Adapter, Proxy,
and more...

Categories of Design Patterns, Continued

 Behavioral Design Patterns

e Such as Iterator, Mediator, Observer, Visitor, and
more...

e Architectural Design Patterns

e Such as Model-View-Controller, Model-View-
Presenter, Model-View-ViewModel, and more...

Let’s Go Through These Patterns

Hopefully some of these patterns will be useful when developing
your applications

(Most of the graphics are from Wikipedia)

First up:

Creational Designh Patterns

The Constructor Designh Pattern

* |n object oriented languages, constructors are special methods
that are used to initialize a newly allocated instance of a object

e JavaScript is no different (although not class-based)

BaseObject InstanceObject
+parent.prototype +new BaseObject()

+toString() +toString()
p _proto_

Without the Constructor Design Pattern

You can create an Object like this as defined in the JavaScript
lecture:

var mustang = {};

mustang.make = "Ford";
mustang.model = "Mustang';
mustang.year = 2015;

But, it's hard to maintain and extend

The Constructor Pattern In JavaScript

function Car(make, model, year) {

this.make = make;
this.model = model;
this.year = year;

this.description = function() {

return this.year + " " + this.make + " " + this.model;
s
return this;
by
var mustang = new Car('Ford', 'Mustang',6 2015);

var camaro = new Car('Chevrolet', 'Camaro',6 2015);

The Constructor Pattern In JavaScript

You could also extend the prototype in conjunction with the
Constructor design pattern to make break things out further:

function Car(make, model, year) {
this.make make;

this.model model ;

this.year year,

return this;

b

Car.prototype.description = function() {
return this.year + " " + this.make + " " + this.model;

35

The Module Design Pattern

e JavaScript doesn't have private functions and properties

e But, using the Module designh pattern, one can hide things with
using closures

ExposedModule Module
+publicMethod() +publicMethod()
+publicProperty . +publicProperty
+privateHelper()
+privateProperty

The Module Pattern

var datelIncrementor = (function() {
var date = new Date();
return {
incrementDate: function() {
date.setDate(date.getDate()+1);
return date;
s
decrementDate: function() {
date.setDate(date.getDate()-1);
return date;

)
35
IDIOF

dateIncrementor.date; // err!
datelIncrementor.incrementDate(); // increment

In JavaScript

The Factory Design Pattern

 Provides a generic interface for creating objects
e Allows you to create objects without having to specify the type

e Use with objects with similar props that are complex to setup

Creator

+factorvMethod() : Product

JAN

Product ConcreteCreator

+factoryMethod() : Product

The Factory Pattern In JavaScript

function USD() {
this.name = 'US Dollar';
this.valueComparedToUSD = 1;
return this;
b
function CHF() {
this.name = 'Swiss Franc';
this.valueComparedToUSD = 1.12;
return this;
b
function CurrencyFactory() {};
CurrencyFactory.prototype.createCurrencyFromCountryCode = function(country) {
if(country === 'US') {
return new USD();
by
if(country === 'CH') {
return new CHF();
b
}s

The Factory Pattern In JavaScript, Continued

var currencyFactory = new CurrencyFactory();
var currency = currencyFactory.createCurrencyFromCountryCode('US"');

console.log(currency.name); // US Dollar

The Singleton Design Pattern

Restricts the instantiation of a class to one instance of an object

Useful if you need to create only one object that is shared across
the whole application or system

Can be advantageous if the object creation and state is
expensive to set up

Some people think that it is overused (they are right, but | still
use them because they are needed)

The Singleton Pattern In JavaScript

var InMemoryDataSource = (function() {
var instance;
function init() {
var myData = [];
return {
add: function(obj) {
myData.push(obj);
s
remove: function(obj) {
myData.splice(myData.index0Of(obj), 1);
s
objectAtIndex: function(index) {
return myData[index];

3
15
3
return {
sharedInstance: function() {
if(!instance) {
instance = init();
3
return instance;
3
3

IDIQK

The Singleton Pattern In JavaScript, Cont'd

InMemoryDataSource.sharedInstance().add({title: 'first'});
var firstObject = InMemoryDataSource.sharedInstance().objectAtIndex(9);

console.log(firstObject.title); // first

The Builder Design Pattern

 You add properties to the builder object

e Then ask the builder to build a specific object with specific
properties

Director Builder
<>
builder : Builder _
buildPart()

construct() O

ConcreteBuilder

buildPart()
getResult() : Product

] this.builder.buildPart(): Zj

The Builder Design In JavaScript

var ButtonBuilder = function() {
this.setColor = function(color) {
this.color = color;

s

this.setText = function(text) {
this.text = text;

s

this.build = function() {
return $('<button/>').css({color:this.color}).html(this.text);

b

return this;

¥

var buttonBuilder = new ButtonBuilder();
buttonBuilder.setColor('black');
buttonBuilder.setText('Build!');
$('body').append(buttonBuilder.build());

// appends <button style="color:black;">Build!</button> to body

Let’s Shift Gears:

Structural Designh Patterns

The Decorator Design Pattern

e Allows behavior to be added to an individual object

e Does not alter the behavior of other objects of a similar type

Component

The Decorator Pattern in JavaScript

function Coffee() {
this.cost = function() {
return 1.50;

by
s
function WithMilk(coffee) {
var origCost = coffee.cost();
coffee.cost = function() {
return 1.00 + origCost;

by
s
function WithSugar(coffee) {
var origCost = coffee.cost();
coffee.cost = function() {
return 0.15 + origCost;

3
35

The Decorator Pattern in JavaScript, Cont'd

var fancyCoffee = new Coffee();

WithMilk(fancyCoffee);
WithSugar(fancyCoffee);
console. log(fancyCoffee.cost) // 2.65

var plainCoffee new Coffee();
console. log(plainCoffee.cost) // 1.50

The Facade Design Pattern

e Use this when you want to expose a simple interface to a more
complex underlying implementation

Clientl Client2

/

‘\doSomething() /aoSomething()
/
\

/
|
Facade

doSomethingl)
s 7 \

\
\
\
\

/7 Vi \ q B
p doS th
packagel/\, package2 \ pa\gkageB\ gla%?lecllrg(r)ue{w Class1();
7 y N Class2 c2 = new Class2():

Classl Class2 Class3 Class3 ¢3 = new Class3();
cl.doStuff(c2)
c3.setX(cl.getX());

return c3.getY();

The Facade Pattern in JavaScript

JQuery's .hasClass() helper:

hasClass: function(selector) {
var className = " " + selector + " "
i =0,
L = this.length;
for (; 1 < 1; i++) {

if (this[i].nodeType === 1 &&
(" " + this[i].className + " ").replace(rclass, " ").indexOf(className) >= 0) {
return true;
by
by

return false;

}

jQuery is full of facades making your life easier, so do take the time
to appreciate them :)

The Adapter Design Pattern

e Allows the interface of an existing object (or class) to be used
from another interface

e Makes existing classes work with others without modifying code

Adaptee

+methodB()

T

Client —> Adaptor

+adaptor: Adaptor +adaptee: Adaptee
+doWork () \\ +methodA() \\

adaptor.methodA();B‘ adaptee.methodB();T

The Adapter Pattern In JavaScript

var Volt = function(v) {
var volts = v;

return {
getVolts: function() {
return volts;

b
setVolts: function(v) {
volts = v;
3
s
}s

var Socket = function() {
return {
getVolt: function() {
return new Volt(120);

3
3
}s
// inspired by:
// http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial

The Adapter Pattern In JavaScript, Cont'd

var SocketAdapter = function() {

var socket = new Socket();

socket.getl20Volt = function() {
return this.getVolt();
s
socket.getl2Volt = function() {
return this.convertVolt(this.getVolt(), 10);
+s
socket.get3Volt = function() {
return this.convertVolt(this.getVolt(), 40);
+s
socket.convertVolt = function(v,i) {
return new Volt(v.getVolts()/1i);

b

return socket;
35

var sa = new SocketAdapter();

console.log(sa.get3Volt().getVolts()); // returns 3

The Proxy Design Pattern

e A proxy is an object functioning as the interface of another

e Could control when an expensive object is instantiated or
provide ways to refer to an object

Client

<<interface>>
__________ > Subject
4% DoAction() IQ—

delegate

DoAction() DoAction()

The Proxy Pattern In JavaScript

Solves the issue problem with var self = that when doing a
setTimeout:

var MyCounter = {
counter: 0,

// Update counter every 50 milliseconds
updateCounter: function() {
var self = this;
setTimeout(function() {
self.counter++;
self.updateCounter();
}, 50);
by
s
MyCounter.updateCounter();

The Proxy Pattern In JavaScript, Cont'd

jQuery fixes this with the $. proxy which provides a way to bind
to a specific context:

var MyCounter = {
counter: 0,

// Update counter every 50 milliseconds
updateCounter: function() {
setTimeout($.proxy(function() {
this.counter++;
this.updateCounter();
}, this), 50);
by
by

MyCounter.updateCounter();

Next Up:

Behavioral Design Patterns

The Iterator Design Pattern

e Used to traverse a container and access the container's elements

e Decouples algorithms from containers

e §$.eachisan example of a jQuery iterator

var designPatternCategories = ['Creational’', 'Structural',
'Behavioral', 'Architectural'];

// Calls the passed in function for each element in the array
$.each(designPatternCategories, function(index, value) {
console.log("Part " + (index+1l) + ": " + value);

1)

The Mediator Design Pattern

e AMediator is an object that encapsulates how a set of objects
(colleagues) interact with each other

e Communication between colleagues is done through this
object only

e Useful for large systems in order to reduce coupling between
different components

The Mediator Pattern In JavaScript

var Mediator = function() {
var colleagues = [];

this.addColleague = function(colleague) {
colleagues.push(colleaqgue);
s
this.sendMemo = function(message, fromColleague) {
$.each(colleagues, function(i, colleague) {
if(fromColleague != colleague) {
colleague.memo(message);

)
1)
¥

return this;

The Mediator Pattern In JavaScript, Cont'd

var Colleague = function(n) {
this.memo = function(message) {

console.log(n + " received '" + message + "'");
b
return this;
s
var m = new Mediator();
var ¢l = new Colleague('cl');
var c2 = new Colleague('c2');
var c¢3 = new Colleague('c3');

m.addColleague(cl);
.addColleague(c2);
m.addColleague(c3);

3

m.sendMemo('"Hello from c2!", c2);

> ¢l received 'Hello from c2!'
> c3% received 'Hello from c2!'

The Observer Design Pattern

 An object, called the Subject, maintains a list of dependents,
Observers that are notified on state changes

e Used in event handling a lot

Subject
Observer <>t+observerCollection
: +registerObserver(observer)
+notify() +unregisterObserver(observer)
Zﬁ& +notifyObservers()

notifyObservers()
for observer in observerCollection

call observer.notify()

ConcreteObserverA ConcreteObserverB

+notify() +notify()

The Observer Pattern In JavaScript

var Subject = function() {

var observerCollection = [];

this.registerObserver = function(observer) {
observerCollection.push(observer);

s

this.unregisterObserver = function(observer) {
observerCollection.splice(observerCollection.indexOf(observer, 1));

s

this.notifyObservers = function(message) {
var context = this;
$.each(observerCollection, function(i, obs) {

obs.notify(context, message);

1)

s

return this;

¥

The Observer Pattern In JavaScript, Cont'd

var Observer = function() {
this.notify = function(context, message) {
console.log(message + " for " + context);
s

return this;

35

var s = new Subject();
var obsl = new Observer();
var obs2 = new Observer();

s.registerObserver(obsl);
s.registerObserver(obs2?);
s.notifyObservers('allPropertiesDidChange');

> allPropertiesDidChange for [object Object]
> allPropertiesDidChange for [object Object]

Finally:

Architectural Design Patterns

The Model-View-Controller (MVC)
Design Pattern

r MODEL W

UPDATES MANIPULATES
. |
VIEW CONTROLLER
\
) é’/
$ S’)
N\ /

The Model-View-Controller (MVC)
Design Pattern

o Controller: the user uses the controller to change the model

e Model: the controller manipulates the model and the model
updates the view

 View: the view requests data from model to generate the Ul
displayed to the user

Very important design pattern and is central to most application
frameworks. We will talk about MVC when it comes to Ember.js

The Model-View-Presenter Design
Pattern

4 N

Presenter
Contains the logic for
application

-

Model Ul Components
Business Has no notion
Objects of the model

~_

.

The Model-View-Presenter Design
Pattern

Derivative of MVC pattern

The presenter is the middle man, (instead of the controller
as in MVC) and all presentation logic is now in the presenter

Model: defines the data that will be displayed
View: passively displays data

Presenter: act upon the model and the view

The Model -View-ViewModel (MVVM)
Design Pattern

ViewModel

DataBmdlng

Presentation and Presentation Logic BusinessLogicandData

The Model-View-ViewModel (MVVM)
Design Pattern

e (Clearly separates the development of the view and the model
e Model: defines the data content
 View: displays data

 ViewModel: mediates between the model and the view that
creates the rules for the view to display the model data without
the view needing to know anything about the model itself

MVVM is powerful and makes complex apps easier to manage

We Will Explore the MV* Patterns
More As We Get Into Ember.js

Again, for more details look at

Learning JavaScript Design Patterns by
Addy Osmani

The book covers many other design patterns
that you can use that | did not cover

COEN 168/268

Mobile Web Application Development

JavaScript Designh Patterns

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

