COEN 168/268

Mobile Web Application Development
MVC in JavaScript and Ember.js Introduction

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

Modern Web Browsers

e Faster rendering:

e DOM manipulation, CSS rendering, GPU acceleration, etc
e Faster JavaScript:

 More efficient interpreters, Just-In-Time (JIT) compilation

e Rich HTML 5 APIs

* Videos, audio, drag & drop, location services, local storage, etc

Modern Web Browsers Allow For
Building Native-Style Apps

For Example, iCloud.com Calendar

iCloud Calendar)
- | 7| | + @ Apple Inc. & www.icloud.com/#calend: ¢ (3]

iCloud Calendar v < July 13-19 2014 > Peter Bergstrom v (2)
® Workouts 1 19 Sat
® Star Walk
v ® Home "
v ® Work
New Event °

® Appointments

® Appointments 4:00
v ® School 5:00 7/15/2014 04:00
7/15/2014 06:15
Ve Trip 6:00
7:00

None
® Activities
None
v ® Calendar
Add File...
10:(
11
. o Delete Cancel OK
i Edit = +

| use this example because | worked on it when | was at Apple

These Web Apps Are Complex

As apps become more complex:

e Number of lines of code increases
e Number of files increase

e Number of developers increase

e Number of designers, PMs, QA increase

This Might Get Out of Control

e Using basic JavaScript or even jQuery is not viable for complex
apps

 You need to make sure that your code is:
e Modular
 Maintainable
 Reusable

e Extendable

Solve This Problem By Using Design
Patterns!

Model-View-Control Ler Design Pattern

(MODEL 4\
UPDATES MANIPULATES

Y

VIEW CONTROLLER
\
6‘\% é’/
Ny 0‘9
N\ /

Model-View-Control Ler Design Pattern

e Controller: the user uses the controller to change the model

e Model: the controller manipulates the model and the model
updates the view

 View: the view requests data from model to generate the Ul
displayed to the user

There Are Many JavaScript MVC Frameworks

e Some are lightweight
e Some are heavy

e Some are restrictive

e Some are open ended
e Some are opinionated

However, most build upon on lower level frameworks such as
jQuery

Back to iCloud.com Calendar

CCCCCCCCCCCCCCC

< S 72 | + € Apple Inc. & www.icloud.com

iCloud Calendar v < July 13-19 2014 > Peter Bergstrom v (?)

Uses the SproutCore JavaScript MVC framework that | used and
worked on back in the day when | was at Apple

ICloud.com Calendar

Demo

SproutCore Is A Heavy MVC Framework

 Not made for mobile

e Contains the kitchen sink in terms of functionality

e Good for large apps, but too complicated for small apps
e |t's old now

However, there are other frameworks!

There Are Many Modern MVC Frameworks...

Backbone.js, Angular)S, Ember.js, KnockoutlJS, Dojo, YUI, Agility.js,
Knockback.js, CanJS, Maria, Polymer, React, cujolS, Montage,
Sammy.js, Stapes, Epitome, soma.js, DUEL, Kendo Ul, PureMVC,
Olives, PlastronlJS, Dijon, rAppid.js, DeftJS + ExtJS, Aria Templates,
Enyo + Backbone.js, SAPUI5, Exoskeleton, Atma.js, Ractive.js,
ComponentlJS, Vue.js, React + Backbone.js

e Taken from TodoMVC.com

There Are so Many That We Can't
Talk about All of Them

Let's Look At TodoMVC.com

v TodoMVC

---’

Helping you select an MV* framework

Which JavaScript MVC Framework
Should You Use?

/\ DANGER

FLAMEWAR
AHEAD

Why not Angular)S?
Why not Backbone.js?
Why not KnockoutJS?
Why Not Agility.js?
Why not ExtJS?

Why not Kockback.js?
Why not CanlJS?

Why not SproutCore?
Why not Polymer?
Why not Sammy.js?
Why not PureMVC?
Why not...

Which Should *We Choose?

e There are so many good frameworks out there
e For this course, we don't have time to cover more than one

e Picking one shouldn't be the trigger of a flame war (please)

Why Ember. js?

As good as any framework out there

What you will learn about Ember. js will translate to other
JavaScript frameworks

It's one of the most powerful (yet opinionated) frameworks out
there so you will learn a lot

| know it well

Because.

Ember.jsis

A framework for creating ambitious
web applications

Some Ember. js Background

Open source framework using the MVC architectural pattern

created by Yehuda Katz (of Ruby on Rails & jQuery) and Tom Dale
in 2011

Ember. js originated from the SproutCore 2.0 project at
Strobe, Inc

Strobe Inc was a startup founded by Charles Jolley, the creator of
SproutCore where myself, Yehuda, Tom, and others worked

SproutCore was developed at Apple when Charles, Tom,
myself and others worked there on .Mac, MobileMe, & iICloud

| Write Apps, | Don't Write Frameworks

e Most of the apps that | wrote while at Apple and Strobe were
written in parallel with the development of SproutCore,
SproutCore 2.0 and Ember.js

e | view my contribution to Ember. js and SproutCore as an

architect and developer of apps that challenged the framework
creators to come up with good solutions to common problems

e | have added some code here and there, but the VAST majority

of the frameworks have been written by others who all deserve
the credit

Ember.js” is a MVC Framework

Uses the Model-View-Controller architectural pattern

Uses proven patterns and common idioms from native
development frameworks, such as iOS

As a heritage in SproutCore which was influenced by Cocoa
development

As a result, a lot of the concepts translate to native app
development, which is useful

Ember. js Core Concepts

Templates -~

Uses the Handlebars template language which extends the
Mustache template syntax

Uses plain HTML and expressions such as {{firstName}}

Describes the user interface in your application using good
semantics

Each template is backed by a model object

When the model object changes, the template updates
automatically

Templates -~

An example Handlebars template might look like this:

<div class="entry">

<hl>{{title}}</hl>

<div class="body">
{{body}};

</div>

</div>

Router

Monitors the browsers window. Location.hash
Translates URLs into templates (or nested templates)
Ember. js makes it easy to restore state just from the URL

Can be used as a light-weight state management system

Components

e Custom HTML backed by JavaScript
e Easy to access in Handlebars templates

e Allows you to create reusable components that have complex
behaviors

Models

A model is a JavaScript object that stores persistent state
Are displayed via templates
Models are usually loaded via AJAX from a back end service

Ember. js does not care what kind of back end service it is or
what it is written in

Controllers

Stores application state

Templates can have a controller in addition to a model if you
want to do more complex operations

Templates can access controller properties

Controllers can respond to actions defined in the HTML

We will go through each of the core concepts in the next couple of
lectures following somewhat the format of the Ember. js guides

http:/emberjs.com/guides/

Now on to Setting Up Ember. js

Ember. js Core Dependencies

As of Ember.js 1.9.1:
1. jQuery (v. 1.10.2)
e http:/jquery.com
2. Handlebars (v. 1.1.12)
e http:/handlebarsjs.com

3. Developers like you

Getting The Ember. js Starter Kit

Download at http://www.emberjs.com

A framework for creating
ambitious web applications

DOWNLOAD THE STARTER KIT

1.6.1: production (min + gzip 90kb) | debug | Handlebars | packages

W Follow @emberjs Follow on

MORE PRODUCTIVE OUT OF THE BOX.

What Does The Starter Kit Include?

v [l css
2] normalize.css
2 style.css
¢ index.html

v @l js

% app.js
v [libs
¢ ember-1.6.1.js
) handlebars-1.1.2.js
® jquery-1.10.2.js
\| README.md
v [tests

2 runner.css
® runner.js
¢ tests.js
v [vendor
g qunit-1.12.0.css
¢ qunit-1.12.0.js

Ember.js Starter Kit README Notes

Start writing your app in js/app. js.
Describe your application HTML in index.html.

During development, you can link to js/libs/ember-*.js to
get the unminified version of Ember.js.

Add CSS to css/style.css.

Open index.html in your browser.

Let's try it the Starter Kit

Demo

So, As Your App Grows You Need Structure

The Starter Kit gives you a basic structure

However, it won't scale very well as your app gets more
advanced

Therefore, we want to have a better directory structure that
separates files into the M-V-C components and more on an
object basis

This means a more complex structure to add convenience

As Your App Grows You Have To Worry About:

Source control, minification of files, concatenation of files, linting,

deployment, API stubbing, APl proxying, testing, continuous
integration, SASS/LESS management, package management,
framework versioning, browser testing, and much more...

While still being stable, fast, and extensible

e |nspired by Stef Penner in his 2014 EmberConf talk: https:/
www.youtube.com/watch?v=4D8z39/72hé4

First Challenge: Splitting Your JS Out Into
Functional Areas

v [app

%) app.js
» || components
» (] controllers
» (] helpers
¢ index.html
» [] models
* router.js
» [] routes
» [styles
» [] templates
» (] views

This is one way to do it with the Ember App Kit structure...

A Sample Ember. js Directory Structure

app.js -> The Ember.Application definition for your app
components/ -> any Ember.js component objects
controllers/ -> Contains any view controller objects
helpers/ -> Contains any Handlebar view helpers
index.html -> The main index file for your app

models/ -> Contains any model objects

A Sample Ember. js Directory Structure,
Cont'd

router.js -> The Router object
routes/ -> Contains any route definitions
styles/ -> Contains any CSS or LESS files

templates/ -> Contains any Handlebar templates (instead of
in index.html)

views/ -> Contains your view objects

So, How Do You Manage All These Files?

e You can do it yourself but you'll add a lot of disastrous and error
prone glue code

e For performance, you need to actually load less files but with all
the components

e Therefore, you need some tool to help you out to make your life
easier

Some Challenges

1. Need to take in account dependencies

2. Need to find all files in the project

3. Need to update when things change

4. Need to help you do this without adding MORE overhead

Bring In ember-cli!

e Ember.js command line utility
e Based onthe Ember App Kit project structure template
o Offers:

e Asset Compilation

e Modules using the ES6 module transpiler

e Testing using CLI

e Dependency Management

Getting Started with ember-cli

Prerequisites

 Node.js: Get from http:/nodejs.org

e PhantomJS: npm install -g phantomjs
e Ember CLI: npm install -g ember-cli

e Bower.npm install -g bower

Creating and Running New Project

In the command line: ember new my-new-app

This will create a new my-new-app folder and generate an
application structure for you. Then, you can:

cd my-new-app
ember server

Then access the app through the browser:
http://localhost:4200

Let's Go Through The Important
ember-cli Commands

ember new <app-name> <options...>

ember new <app-name> <options...>

Creates a new folder and runs ember init in it.

--dry-run (Boolean) (Default: false)
aliases: -d

--verbose (Boolean) (Default: false)
aliases: -v

--blueprint (gitUrl, Path) (Default: app)
aliases: -b <value>

--skip-npm (Boolean) (Default: false)
aliases: -sn

--skip-bower (Boolean) (Default: false)
aliases: -sb

--skip-git (Boolean) (Default: false)
aliases: -sg

ember 1nit <app-name> <options...>

ember init <glob-pattern> <options...>

Creates a new ember-cli project in the current folder.

aliases: 1

--dry-run (Boolean) (Default: false)
aliases: -d

--verbose (Boolean) (Default: false)
aliases: -v

--blueprint (Path)
aliases: -b <value>

--skip-npm (Boolean) (Default: false)
aliases: -sn

--skip-bower (Boolean) (Default: false)
aliases: -sb

--name (String) (Default:)
aliases: -n <value>

ember serve <options...>

Builds and serves your app, rebuilding on file changes.
aliases: server, s
--port (Number) (Default: 4200)
aliases: -p <value>
--host (String) (Default: 0.0.0.0)
aliases: -H <value>
--proxy (String)
aliases: -pr <value>, -pxy <value>
--insecure-proxy (Boolean) (Default: false) Set false to proxy self-signed SSL certificates
aliases: -inspr
--watcher (String) (Default: events)
aliases: -w <value>
--live-reload (Boolean) (Default: true)
aliases: -lr
--live-reload-port (Number) (Defaults to port number + 31529)
aliases: -lrp <value>
--environment (String) (Default: development)
aliases: -e <value>, -dev (--environment=development), -prod (--environment=production)
--output-path (Path) (Default: dist/)
aliases: -op <value>, -out <value>

ember build <options...>

ember build <options...>
Builds your app and places it into the output path (dist/ by default).
aliases: b
--environment (String) (Default: development)
aliases: -e <value>, -dev (--environment=development), -prod (--environment=production)
--output-path (Path) (Default: dist/)
aliases: -0 <value>
--watch (Boolean) (Default: false)
aliases: -w
--watcher (String)

ember test <options...>

Runs your apps test suite.

aliases: test, t

--environment (String) (Default: test)
aliases: -e <value>

--config-file (String) (Default: ./testem.json)
aliases: -c <value>, -cf <value>

--server (Boolean) (Default: false)
aliases: -s

--port (Number) (Default: 735/) The port to use when running with --server.
aliases: -p <value>

--filter (String) A regex to filter tests ran
aliases: -f <value>

--module (String) The name of a test module to run
aliases: -m <value>

--watcher (String) (Default: events)
aliases: -w <value>

ember generate <blueprint>
<options...>

ember generate <blueprint> <options...>
Generates new code from blueprints.
aliases: ¢

--dry-run (Boolean) (Default: false)
aliases: -d

--verbose (Boolean) (Default: false)
aliases: -v

--pod (Boolean) (Default: false)
aliases: -p

ember destroy <blueprint>
<options...>

Destroys code generated by generate command.
aliases: d

--dry-run (Boolean) (Default: false)
aliases: -d

--verbose (Boolean) (Default: false)
aliases: -v

--pod (Boolean) (Default: false)
aliases: -p

Additional ember-cli commands

ember help <command-name (Default: all)>
Outputs the usage instructions for all commands or the provided command
aliases: h, help, -h, --help
ember update
Updates ember-cli to the newest available version.
ember version
outputs ember-cli version
aliases: v, version, -v, --version

Let's Create a New App Using
ember-clil

Demo
Sample App Is Available Here:

http:/coen268.peterbergstrom.com/resources/
emberclisampleapp.zip

Using Modules & the Resolver

Manages your dependencies
Manages your load order of files

Simple syntax that allows you to have objects NOT in the global
namespace

However, it means that you have to import and export
dependencies

An Example: Book Model Object

In models/book. js:

1l // always import Ember if you need it

2 import Ember from "ember";

3

4 var Book = Ember.0Object.extend({

5 displayString: function() {

6 return "%@ - %@".fmt(this.get('title'), this.get('pubYear'));
/ }.property('title’, 'pubYear');

8 });

>

10 export default Book;

An Example: Book Model Object Imported In
BooksController

import Ember from "ember";
import Book from "./models/book";

var BooksController = Ember.Controller.extend({
// Use the Book model object here somewhere...

IDF

CO O UT A WNDN B

export default BooksController;

For More Info About ember-cli

Including most of the instructions | just gave:

http:/iamstef.net/ember-cli/

Stef Penner talking about ember-cli in his 2014 EmberConf talk:
https:/www.youtube.com/watch?v=4D8z3972h64

COEN 168/268

Mobile Web Application Development
MVC in JavaScript and Ember.js Introduction

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

