COEN 168/268

Mobile Web Application Development
Optimizing Apps For Production

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

Optimizing Apps For Production

Deploying an app in production is
relatively easy

The challenge is doing it the right way to provide the best user
experience possible

At a Bare Minimum...

If it Is a simple web app:

e Get a domain

e Get a publicly web server

e Upload your code and assets to the server

If is a complex app, you might also have do a build:

e |ike if you are using Ember-CLI

That's it

Kind of

However, in the real world, users expect

That your app loads quickly
That your app is fast when using it
That your app won't crash

And many, many other things...

Let's Talk About Performance

 The biggest challenge is loading performance:

e The time it takes from when the user hits "Go" in their browser
to the page is loaded and useable

e The secondary, but often overlooked challenge is run time
performance:

e For example, clicking on a button takes more than 100ms to
get a response which users will notice as slowness

Performance is Even More of a Concern on
Mobile

e Slower connections
e Slower devices

e More latency

Optimizing Loading Performance

What happens when you load a page?

1. User hits "Go"

2. DNS resolves URL

3. Browser connect to site

4. Browser starts to download resources:
e HTML, CSS, JavaScript, images, etc

5. Once the browser has enough to start executing the page it will

Some Challenges

The browser reads in the web page

When it finds resources (CSS, JavaScript, images to load), it will
start doing so

However, the page isn't really finished loading until it's loaded
the whole HTML page

Chrome is limited to loading 6 resources at once per domain

Therefore, you need to be careful to load things in the order you
want in order for your page to load quickly

The Bottom Line

 Due to latency, you want to minimize the number of individual
requests

e Try to bundle CSS, JavaScript, and images resources together
e Reduce latency by using Content Delivery Networks (CDNs)

e Due to bandwidth, you want to minimize the size of your assets
so that they take less time to transfer

 Minify your resources so that they are smaller in size

Why Bundle Assets Together?

Ex: Let's say that you have 50ms latency and 100 JS source files to
transfer at 50ms each:

Non-Bundled:

(50ms latency + 50ms xfer time) x 100 = 25 s

Bundled:

50ms latency + (50ms xfer time) x 100 = 5.5 s

But Wait, You Can Load 6 Things Per Domain!

Non-Bundled:

(50ms latency + 50ms xfer time) x 100 / 6 = 4.2 s
Bundled:

50ms latency + (50ms xfer time) x 100 / 1 = 5.5 s

BUT, in the bundled case, you have 5 more connections to load
Images, CSS, etc that you would otherwise have to wait on

Therefore, For Huge Success You Should

Concatenate and minify JavaScript source files together
Concatenate and minify CSS source files
Use image sprites instead of individual images

Load assets from multiple domains or CDNs (cross domain is OK
for resources)

Use server tricks to compress assets, such as gzipping

JavaScript Concatenation and Minification

e Combines various JavaScript files in ORDER into one larger file

e |oading order is very important. For example, Ember-CLI helps
you do that with module dependency tracking

 This reduces the number of individual fetches of files form the
server

e Using minification removes comments, whitespace, and mangles
variable names to be smaller

JavaScript Concatenation and Minification

There are lots of packages you can use, but these are popular and
well-proven:

o UglifyJS
e npm install uglify-js
e YUl Compressor
e npm install yuicompressor

And many more, some good, some bad.

Let's Check Out the jQuery Source Code

e Take the contents of the src directory
e There are 81 JavaScript files there for a total of 251 KB

e That is a realistic amount of code with whitespace and
comments

Let's make it smaller!

Test 1: Combine all into one file, jquery. js

Just use cat command:
cat [files] > jquery.js

Resulting size:
201 KB (20% smaller)

Note: This does not take in account file dependencies, which can
be problematic

Test 1, What Happened?

Some efficiencies since it is in one file

This does not take in account file dependencies, which can be
problematic

In real life, you might need to arrange the files in the right order
to ensure that dependencies are met

Ember-CLI does this for you

Test 2: Run jquery. js compress

Removal of comments and whitespace
uglifyjs jquery.js -o jquery-uglified.js

Resulting size:
110 KB (56% smaller)

Test 2: What Happened?

e Comments are gone

e Newlines and other whitespace is removed

The Compression Step

From:

1 function func(title) {

2 var titleString = 'Title: ' + title;
3 var heading = $('h1')[07;

4 heading.html(titleString);

>}

To:

function func(title){var titleString="Title: "+title;var heading=$%$("h1")[0];heading.html(titleString)}

Test 3: Run jquery. js mangle and compress

With variable name mangling and removal of comments and
whitespace

uglifyjs jquery.js -o jquery-uglified-mangled.js
-C -m

Resulting size:
74 KB (70% smaller)

Test 3: What Happened?

e Comments are gone
e Newlines and other whitespace is removed

e Variable names are mangled

Mangled, what is it?

(white space added to show mangling)

1 function func(title) {

2 var titleString = 'Title: ' + title;
3 var heading = $('h1')[0];

4 heading.html(titleString);

>}

function func(n) {
var t = "Title: "+ n,
c = $("h1")[0];
c.html(t)6

b

oun p N N B

However, Not Everything Can Be Mangled

Calls into objects cause problems because it can't be mangled:

var updateTitles = function() {
this.titles = [];
for(var 1=0; 1 < this.content.length; i++) {
this.content[1i].title = "Title" + 1;
this.titles.push(this.content[1].title);

J
J

N OYOUh A WWNWDN B

Also, things have to be inside of function scope to be mangled.
Furthermore, all these lookups can affect performance.

Instead, Do This

1 var updateTitles = function() {

2 var titles =[],

3 content = this.content;

4 for(var i=0, iLen=content.length; i < iLen; i++) {

5 var contentAtIndex = content[1i];

6 contentAtIndex.title = "Title" + 1;
/ titles.push(contentAtIndex.title);
8

9 this.titles = titles;

10 }

Your code will also run faster because it is more optimized and
there are less lookups.

NOYU AN

And Mangle Into This:

var updateTitles = function(){
for(var t=[], i=this.content, e=0, l=i.length; L > e; e++) {
var n = i[e];
n.title = "Title" + e, t.push(n.title);

)
this.titles = ¢

35

Test 4: Run through gzip

Web servers can gzip assets, let's gzip:
e jquery.js from test 1: 59 KB (79% smaller)
e jgquery-uglified. js from test 2: 31 KB (88% smaller)

* jquery-uglified-mangled.js from test 3: 25 KB (90%
smaller)

So, You Notice That Using gzip Is the Biggest
Bang For Your Buck

 Even with the non-compressed files, gzipping saves the highest
percentage

e However, it is still vital that you concatenate files because it
saves on round trips to the server

e You should configured gzip foryour .html, .js, .css, etc files

e |t will increase CPU load on the server, but it is worth it

How to use gzip in Apache .htaccess

<ifModule mod gzip.c>

mod_gzip on Yes

mod gzip_ dechunk Yes

mod gzip item include file .(html?|txt|css|js|phplpl)$

mod gzip item_include handler ~cgi-script$

mod gzip_item _include mime ~text/.*

mod gzip item include mime “application/x-javascript.¥*

mod _gzip item _exclude mime ”~image/.*

mod gzip item exclude rspheader ~Content-Encoding:.*gzip.*
</ifModule>

Example from: http:/www.feedthebot.com/pagespeed/enable-
compression.html

Using Ember-CLI to build

e As part of ember build for production, it will use UglifyJS to:

e combine, compress, and mangle

This is great, because you do not have to worry about it! Also, it
ensures that all files are loaded in order when they are combined.

Just run:

ember build --environment production

Minifying CSS

Basically the same as JavaScript

You can use lessc for this:

complile app.less to app.css
Lessc app.less app.css

compile app.less to app.css and minify (compress) the result
lessc -x app.less app.css

CSS Unminified

footer {
z-index: 2;
position: fixed;
bottom: Opx;
width: 100%;
height: 44px;
border-top: 1px solid #cccccc;
background: #efefef;

3

footer ul {
margin-top: 2px;

3

footer ul li {
display: inline;
float: left;
width: 33%;
text-align: center;

3

footer ul li a {
color: #aaa;
text-decoration: none;
font-size: 12px;

3

footer ul li a.active {
color: red;

3

footer ul 1li a span {
font-size: 18px;
Lline-height: Opx;

3

CSS Minified (wrapped from one line)

footer{z-index:2;position:fixed;bottom:0;width:1
V0% ;height:44px;border-top:1px solid #ccc;backgr
ound: #efefef}footer ul{margin-top:2px}footer ul
li{display:inline;float:left;width:33%;text-alig
n:center}footer ul L1 a{color:#aaa;text-decorati
on:none;font-size:12px}footer ul Lli a.active{col
or:#f00}footer ul Lli a span{font-size:18px;line-
height:0}

Images

Images are already compressed

No gzip tricks here can help you

However, there are things you can do such as image spriting
For photos, use JPGs with lower compression

For icons and things with solid colors, use PNGs since they
compress well

Image Spriting
Instead of loading each image asset separately you combine

them all into a larger image

This means that the image is larger, but it isn't as large all the
Images combined

But you save on the number of calls to load assets
As a result, you take much less of latency hit when loading assets

Image spriting is done via CSS background position

How Do You Make A Sprite?

Let's say that you have 6 icons on your website that are 30px
wide and 25 px tall

Each are PNGs and about 4KB each.
Combined in a sprite, they are all 5KB together

Savings are made because PNGs compress solid colors, for
example

Sprite CSS

.icon {
width: 30px;
height: 25px;
background: url(images/sprite.png);

b

.icon.home-icon {
background-position: @px Opx;

b

.icon.search-icon {
background-position: @px -25px;

b

.icon.search-icon {
background-position: @px -50px;

b

.icon.reload-icon {
background-position: -30px Opx;

by

.icon.add-icon {
background-position: -30px -25px;

b

.icon.mail-icon {
background-position: -3@0px -50px;

b

Use CSS Instead of Images

CSS is text which compresses well, images do not compress
Whenever possible, try to achieve the effect in CSS
Resort to an image only when it is strictly needed

Most things are achievable in CSS if they are not photos

Load Assets From Several Domains

e |oading assets such as JavaScript, CSS, and images are not
restricted to one domain

e |fyou load assets from other domains, then you can get around
the browser connection limits

e For example, if you have an image heavy site, you can alternate
loading from different domains:

e imgl.mydomain.com, imgZ2.mydomain.com, etc

Load Assets From a Content Delivery Network

e These are expensive but allow you to cache assets closer to the
user

e |nstead of having to go to your server, it can hit a cache layer
that is much closer

e Closer means that there is less latency

 You can use this for jQuery, for example by loading from
ajax.googleapis.com:

e See: https:/developers.google.com/speed/libraries/devguide

Load JavaScript Last

e Put <script> tags at the bottom of the page

 This allows the HTML page to be loaded faster so that the user
sees your initial page instead of a white screen

e Can drastically improve the user's perception of loading if you
have a loading screen baked into the page

Take advantage of the async nature of AJAX

If you have required data that you need to load, try to send off
the AJAX call as early as possible in a "bootstrap”

When you're waiting, on the AJAX call, it won't block a
connection

Even if need to do an AJAX call, you might just do it with raw
JavaScript at the top of the page

While jQuery and other libraries are loading, you can also be
waiting on your initial JSON data in parallel

A JavaScript Performance (and Minification)
Tip

Cache properties that are accessed using object notation or in
functions, to make your code faster and also compress better

for(var i=0; i < this.get('content').length; i++) {
this.get('content').objectAt(1i).set('localTime', new Date());
b

var content = this.get('content'),
date = new Date();
for(var i=0, iLen=content.length; i < iLen; i++) {
content.objectAt(1i).set('localTime', date);

b

Use things such as the Webkit Debugger or
YSlow

e Use the Webkit Debugger to analyze loading and runtime speed
e Audit your website using YSlow
e Check out: https://developers.google.com/speed/

Let's try this now!

COEN 168/268

Mobile Web Application Development
Optimizing Apps For Production

Peter Bergstrom (pbergstrom@scu.edu)

Santa Clara University

